2412
O. Khoumeri et al. / Tetrahedron Letters 53 (2012) 2410–2413
Giraud, L.; Sabuco, J. F.; Vanelle, P.; Barreau, M. Tetrahedron Lett. 1991, 32,
References and notes
4125–4128.
18. General procedure for TDAE reaction of 1 with 2a–k. Into a two-necked flask
equipped with a drying tube (silica gel) and a nitrogen inlet was added 100 mL
of anhydrous THF solution of 2,3-bis(bromomethyl)quinoxaline (1) (0.3 g,
0.95 mmol) and corresponding N-(benzenesulfonyl)benzylimine 2a–k
(3 equiv). The solution was stirred and maintained at this temperature for
1. (a) Arthur, G.; Elor, K. B.; Robert, G. S.; Guo, Z. Z.; Richard, J. P.; Stanley, D.; John,
R. K.; Sean, T. J. Med. Chem. 2005, 48, 744–752; (b) Andres, J.; Belen, Z.; Ibnacio,
A.; Antonio, M. J. Med. Chem. 2005, 48, 2019–2025; (c) Lainne, E. S.; William, J.
S.; Robert, C. R. J. Med. Chem. 2002, 45, 5604–5606; (d) Naylor, M. A.; Stephen,
M. A.; Nolan, J.; Sutton, B.; Tocher, J. H.; Fielden, E. M.; Adams, J. E.; Strafford, I.
Anticancer Drug Des. 1993, 8, 439–461; (e) Sarges, R.; Howard, H. R.; Browne, R.
C.; Label, L. A.; Seymour, P. A. J. Med. Chem. 1990, 33, 2240–2254.
2. Loriga, M.; Piras, S.; Sanna, P.; Paglietti, G. Farmaco 1997, 52, 157–166.
3. Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo
Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M. E.
Bioorg. Med. Chem. Lett. 2005, 15, 761–764.
4. (a) Fournet, A.; Mahieux, R.; Fakhfakh, M. A.; Franck, X.; Hocquemiller, R.;
Figadere, B. Bioorg. Med. Chem. Lett. 2003, 13, 891–894; (b) Munos, M.-H.;
Mayrargue, J.; Fournet, A.; Gantier, J.-C.; Hocquemiller, R.; Moskowitz, H. Chem.
Pharm. Bull. 1994, 42, 1914–1916.
5. (a) Kim, Y. B.; Kim, Y. H.; Park, J. Y.; Kim, S. K. Bioorg. Med. Chem. Lett. 2004, 14,
541–544; (b) He, W.; Meyers, M. R.; Hanney, B.; Sapada, A.; Blider, G.;
Galzeinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, H. Bioorg. Med.
Chem. Lett. 2003, 13, 3097–3100; (c) Sakata, G.; Makino, K.; Kurasawa, Y.
Heterocycles 1988, 27, 2481–2515.
6. Cheeseman, G. W. H.; Cookson, R. F. In The Chemistry of Heterocyclic Compounds;
Weissberger, A., Taylor, E. C., Eds.; John Wiley and Sons: New York, 1979; Vol.
35, p 1.
7. Harmenberg, J.; Akesson-Johansson, A.; Graslund, A.; Malmfors, T.; Bergman, J.;
Wahren, B.; Akerfeldt, S.; Lundblad, L.; Cox, S. Antiviral Res. 1991, 15, 193–204.
8. (a) Hazeldine, S.; Polin, L.; Kushner, J.; White, K.; Corbett, T. H.; Horwitz, J. P.
Bioorg. Med. Chem. 2006, 14, 2462–2467; (b) Hazeldine, S.; Polin, L.; Kushner, J.;
White, K.; Corbett, T. H.; Biehl, J.; Horwitz, J. P. Bioorg. Med. Chem. 2005, 13,
1068–1081; (c) Hazeldine, S.; Polin, L.; Kushner, J.; White, K.; Corbett, T. H.;
Horwitz, J. P. Bioorg. Med. Chem. 2005, 13, 3910–3920.
9. (a) Lorusso, P. M.; Parchment, R.; Demchik, L.; Knight, J.; Polin, L.; Dzubow, J.;
Behrens, C.; Harrison, B.; Trainor, G.; Corbett, T. H. Invest. New Drugs 1998–
1999, 16, 287–296; (b) Corbett, T. H.; Lorusso, P. M.; Demchick, L.; Simpson, C.;
Pugh, S.; White, K.; Kushner, J.; Polin, L.; Meyer, J.; Czarnecki, J.; Heilbrun, L.;
Horwitz, J. P.; Gross, J. L.; Behrens, C. H.; Harrison, B. A.; McRipley, R. J.; Trainor,
G. Invest. New Drugs 1998, 16, 129–139.
10. (a) Kakodkar, N. C.; Peddinti, R.; Kletzel, M.; Tian, Y.; Guerrero, L. J.; Undevia, S.
D.; Geary, D.; Chlenski, A.; Yang, Q.; Salwen, H. R.; Cohn, S. L. Pediatr. Blood
Cancer 2011, 56, 164–167; (b) Undevia, S. D.; Innocenti, F.; Ramirez, J.; House,
L.; Desai, A. A.; Skoog, L. A.; Singh, D. A.; Karrison, T.; Kindler, H. L.; Ratain, M. J.
Eur. J. Cancer 2008, 44, 1684–1692; (c) Alousi, A. M.; Boinpally, R.; Wiegand, R.;
Parchment, R.; Gadgeel, S.; Heilbrun, L. K.; Wozniak, A. J.; DeLuca, P.; LoRusso,
P. M. Invest. New Drugs 2007, 25, 147–154; (d) Snapka, R. M.; Gao, H.;
Grabowski, D. R.; Brill, D.; Chan, K. K.; Li, L.; Li, G. C.; Ganapathi, R. Biochem.
Biophys. Res. Commun. 2001, 280, 1155–1160.
30 min and then was added dropwise (via
1.42 mmol). The solution was vigorously stirred at À20 °C for 1 h. After this
time, TLC analysis (CH2Cl2) clearly showed that compound was totally
a syringe) the TDAE (0.28 g,
1
consumed. The solution was filtered (to remove the octamethyl-oxamidinium
dibromide). The filtrate was concentrated in vacuo, diluted with
dichloromethane, washed with H2O (3 Â 40 mL) and dried over MgSO4. After
evaporation, the crude product was purified by silica gel chromatography
(CH2Cl2) and recrystallized from isopropanol, gave corresponding 2-
substituted-tetrahydropyrido[3,4-b]quinoxaline derivatives (3a–k). New
products: 3a: white solid; mp 182 °C; 1H NMR (200 MHz, CDCl3) d 2.30 (s,
3H, CH3); 3.44 (dd, 1H, J = 17.5 Hz, J = 6.1 Hz, CH2); 3.63 (dd, 1H, J = 17.5 Hz,
J = 5.2 Hz, CH2); 4.31 (d, 1H, J = 18.4 Hz, CH2); 5.80 (d, 1H, J = 18.4 Hz, CH2);
5.75 (dd, 1H, J = 6.1 Hz, J = 5.2 Hz, CH); 7.14–7.35 (m, 7H, Ar); 7.72 (d, 4H,
J = 7.1 Hz, Ar); 7.92–8.00 (m, 2H, Ar). 13C NMR (50 MHz, CDCl3) d 21.4 (CH3);
34.7 (CH2); 46.0 (CH2); 54.3 (CH); 127.0 (2 Â CH); 127.1 (2 Â CH); 127.9 (CH);
128.5 CH); 128.6 (CH); 128.8 (2 Â CH); 129.7 (CH); 129.8 (2 Â CH); 129.9 (CH);
136.9 (C); 137.6 (C); 141.1 (C); 141.7 (C); 143.7 (C); 148.4 (C); 149.5 (C). Anal.
Calcd for C24H21N3O2S: C, 69.37; H, 5.09; N, 10.11; S, 7.72. Found: C, 69.31; H,
5.21; N, 10.18; S, 7.61. Compound 3b: white solid; mp 200 °C; 1H NMR
(200 MHz, CDCl3) d 2.18 (s, 3H, CH3); 3.34 (dd, 1H, J = 16.6 Hz, J = 5.3 Hz, CH2);
3.70 (dd, 1H, J = 16.6 Hz, J = 6.7 Hz, CH2); 4.68 (d, 1H, J = 17.1 Hz, CH2); 4.98 (d,
1H, J = 17.1 Hz, CH2); 5.87 (dd, 1H, J = 6.7 Hz, J = 5.3 Hz, CH); 7.06 (d, 3H,
J = 8.2 Hz, Ar); 7.10–7.22 (m, 2H, Ar); 7.31–7.40 (m, 1H, Ar); 7.63 (m, 2H, Ar);
7.70–7.75 (m, 2H, Ar); 7.93–8.02 (m, 2H, Ar). 13C NMR (50 MHz, CDCl3) d 21.2
(CH3); 36.6 (CH2); 48.3 (CH2); 53.9 (CH); 127.0 (CH); 127.6 (2 Â CH); 127.7
(CH); 128.6 (CH); 128.7 (CH); 129.1 (CH); 129.4 (2 Â CH); 129.8 (CH); 129.9
(CH); 130.2 (CH); 132.6 (C); 135.1 (C); 138.1 (C); 141.1 (C); 141.9 (C); 143.7
(C); 149.1 (C); 150.0 (C). Anal. Calcd for C24H20ClN3O2S: C, 64.06; H, 4.48; Cl,
7.88; N, 9.34; S, 7.13. Found: C, 63.85; H, 4.59; N, 9.33; S, 7.03. Compound 3c:
white solid; mp 201 °C; 1H NMR (200 MHz, CDCl3) d 2.15 (s, 3H, CH3); 3.30 (dd,
1H, J = 16.4 Hz, J = 5.7 Hz, CH2); 3.67 (dd, 1H, J = 16.4 Hz, J = 6.6 Hz, CH2); 4.74
(d, 1H, J = 16.9 Hz, CH2); 4.99 (d, 1H, J = 16.9 Hz, CH2); 5.70 (dd, 1H, J = 6.6 Hz,
J = 5.7 Hz, CH); 7.01 (d, 2H, J = 8.2 Hz, Ar); 7.05–7.07 (m, 3H, Ar); 7.52–7.56 (m,
1H, Ar); 7.62 (d, 2H, J = 8.2 Hz, Ar); 7.68–7.76 (m, 2H, Ar); 7.91–8.01 (m, 2H,
Ar). 13C NMR (50 MHz, CDCl3) d 21.2 (CH3); 37.0 (CH2); 48.6 (CH2); 56.3 (CH);
122.4 (C); 127.5 (2 Â CH); 127.6 (CH); 127.7 (CH); 128.6 (CH); 128.7 (CH);
129.2 (CH); 129.3 (2 Â CH); 129.7 (CH); 129.8 (CH); 133.3 (CH); 134.8 (C);
140.0 (C); 141.1 (C); 141.9 (C); 143.7 (C); 149.1 (C); 149.9 (C). Anal. Calcd for
C
24H20BrN3O2S: C, 58.30; H, 4.08; N, 8.50; S, 6.49. Found: C, 58.11; H, 4.07; N,
8.41; S, 6.25. Compound 3d: white solid; mp 186 °C; 1H NMR (200 MHz, CDCl3)
d 2.17 (s, 3H, CH3); 2.60 (s, 3H, CH3); 3.41 (dd, 1H, J = 18.0 Hz, J = 2.6 Hz, CH2);
3.59 (dd, 1H, J = 18.0 Hz, J = 6.9 Hz, CH2); 4.28 (d, 1H, J = 18.3 Hz, CH2); 4.94 (d,
1H, J = 18.3 Hz, CH2); 5.85 (dd, 1H, J = 6.9 Hz, J = 2.6 Hz, CH); 6.76–6.94 (m, 2H,
Ar); 7.00 (d, 2H, J = 8.2 Hz, Ar); 7.11–7.24 (m, 2H, Ar); 7.62 (d, 2H, J = 8.2 Hz,
Ar); 7.71–7.76 (m, 2H, Ar); 7.93–8.01 (m, 2H, Ar). 13C NMR (50 MHz, CDCl3) d
19.6 (CH3); 21.2 (CH3); 34.7 (CH2); 46.7 (CH2); 52.6 (CH); 125.9 (CH); 126.2
(CH); 127.5 (2 Â CH); 128.3 (CH); 128.4 (CH); 128.6 (CH); 129.4 (2 Â CH);
129.7 (CH); 129.8 (CH); 131.4 (CH); 136.0 (C); 136.6 (C); 137.3 (C); 141.1 (C);
141.7 (C); 143.8 (C); 148.9 (C); 150.2 (C). Anal. Calcd for C25H23N3O2S: C, 69.91;
H, 5.40; N, 9.78; S, 7.47. Found: C, 69.56; H, 5.49; N, 9.78; S, 7.33. Compound
3e: white solid; mp 184 °C; 1H NMR (200 MHz, CDCl3) d 2.19 (s, 3H, CH3); 3.39
(dd, 1H, J = 16.4 Hz, J = 4.8 Hz, CH2); 3.67 (dd, 1H, J = 16.4 Hz, J = 6.9 Hz, CH2);
3.77 (s, 3H, OCH3); 4.64 (d, 1H, J = 17.3 Hz, CH2); 5.03 (d, 1H, J = 17.3 Hz, CH2);
5.86 (dd, 1H, J = 6.9 Hz, J = 4.8 Hz, CH); 6.70–6.86 (m, 2H, Ar); 7.02 (d, 2H,
J = 8.2 Hz, Ar); 7.16–7.27 (m, 2H, Ar); 7.59 (d, 2H, J = 8.2 Hz, Ar); 7.68–7.75 (m,
2H, Ar); 7.93–8.00 (m, 2H, Ar). 13C NMR (50 MHz, CDCl3) d 21.2 (CH3); 36.5
(CH2); 47.7 (CH2); 52.1 (CH); 55.1 (OCH3); 110.7 (CH); 120.4 (CH); 127.2
(2 Â CH); 127.6 (CH); 128.1 (C); 128.5 (CH); 128.7 (CH); 129.1 (CH); 129.2
(2 Â CH); 129.5 (CH); 129.6 (CH); 136.2 (C); 140.9 (C); 141.7 (C); 143.2 (C);
149.4 (C); 151.0 (C); 156.4 (C). Anal. Calcd for C25H23N3O3S: C, 67.40; H, 5.20;
N, 9.43; S, 7.20. Found: C, 66.86; H, 5.24; N, 9.37; S, 7.02. Compound 3f: white
solid; mp 136 °C; 1H NMR (200 MHz, CDCl3) d 2.30 (s, 3H, CH3); 3.51 (dd, 1H,
J = 17.4 Hz, J = 5.6 Hz, CH2); 3.61 (dd, 1H, J = 17.4 Hz, J = 3.3 Hz, CH2); 4.35 (d,
1H, J = 18.2 Hz, CH2); 5.15 (d, 1H, J = 18.2 Hz, CH2); 5.74 (dd, 1H, J = 5.6 Hz,
J = 3.3 Hz, CH); 7.17 (d, 2H, J = 7.9 Hz, Ar); 7.33–7.48 (m, 4H, Ar); 7.68–7.75 (m,
4H, Ar); 7.93–8.00 (m, 2H, Ar). 13C NMR (50 MHz, CDCl3) d 21.4 (CH3); 35.3
(CH2); 46.3 (CH2); 54.4 (CH); 123.6 (q, J = 272.6 Hz, CF3); 124.0 (q, J = 4.0 Hz,
CH); 124.9 (q, J = 3.6 Hz, CH); 127.0 (2 Â CH); 128.6 (CH); 128.7 (CH); 129.4
(CH); 129.9 (2 Â CH); 130.0 (CH); 130.1 (CH); 131.0 (CH); 131.6 (q, J = 3.6 Hz,
C); 136.5 (C); 139.2 (C); 141.3 (C); 141.8 (C); 144.1 (C); 148.0 (C); 148.9 (C).
Anal. Calcd for C25H20F3N3O2S: C, 62.10; H, 4.17; N, 8.69; S, 6.63. Found: C,
61.87; H, 4.36; N, 8.62; S, 6.42. Compound 3g: white solid; mp 184 °C; 1H NMR
(200 MHz, CDCl3) d 2.30 (s, 3H, CH3); 3.44 (dd, 1H, J = 17.6 Hz, J = 5.8 Hz, CH2);
3.57 (dd, 1H, J = 17.6 Hz, J = 2.6 Hz, H2); 4.35 (d, 1H, J = 18.3 Hz, CH2); 5.09 (d,
1H, J = 18.3 Hz, CH2); 5.71 (dd, 1H, J = 5.8 Hz, J = 2.6 Hz, CH); 6.80–7.04 (m, 3H,
Ar); 7.15–7.21 (m, 3H, Ar); 7.69–7.75 (m, 4H, Ar); 7.93–8.00 (m, 2H, Ar). 13C
NMR (50 MHz, CDCl3) d 21.3 (CH3); 34.9 (CH2); 46.1 (CH2); 54.1 (CH); 114.3 (d,
J = 22.3 Hz, CH); 114.9 (d, J = 20.8 Hz, CH); 122.6 (d, J = 2.9 Hz, CH); 127.0
(2 Â CH); 128.5 (CH); 128.6 (CH); 129.8 (3 Â CH); 129.9 (CH); 130.4 (d,
11. (a) Yoshiizumi, K.; Yamamoto, M.; Miyasaka, T.; Ito, Y.; Kumihara, H.; Sawa, M.;
Kiyoi, T.; Yamamoto, T.; Nakajima, F.; Hiramaya, R.; Kondo, H.; Ishibushi, E.;
Ohmoto, H.; Inoue, Y.; Yoshino, K. Bioorg. Med. Chem. 2003, 11, 433–450; (b)
Wheeler, G. P.; Bowdon, B. J.; Temple, C., Jr.; Adamson, D. J.; Webster, J. Cancer
Res. 1983, 43, 3567–3575.
12. Armand, J.; Boulares, L.; Bellec, C.; Pinson, J. Can. J. Chem. 1988, 66, 1500–1505.
13. (a) Mahesh, M.; Murphy, J. A.; LeStrat, F.; Wessel, H. P. Beilstein J. Org. Chem.
2009, 5, 1–13; (b) Murphy, J. A.; Khan, T. A.; Zhou, S.; Thomson, D. W.;
Schoenebeck, F.; Mahesh, M.; Park, S. R.; Tuttle, T.; Berlouis, L. E. A. Angew.
Chem., Int. Ed. 2007, 46, 5178–5180; (c) Pooput, C.; Medebielle, M.; Dolbier, W.
R., Jr. J. Org. Chem. 2006, 71, 3564–3568; (d) Murphy, J. A.; Khan, T. A.; Zhou, S.;
Thomson, D. W.; Mahesh, M. Angew. Chem., Int. Ed. 2005, 44, 1356–1360; (e)
Pooput, C.; Medebielle, M.; Dolbier, W. R., Jr. Org. Lett. 2004, 6, 301–303; (f)
Takechi, N.; Ait-Mohand, S.; Medebielle, M.; Dolbier, W. R., Jr. Tetrahedron Lett.
2002, 43, 4317–4319.
14. (a) Montana, M.; Terme, T.; Vanelle, P. Tetrahedron Lett. 2005, 46, 8373–8376;
(b) Amiri-Attou, O.; Terme, T.; Vanelle, P. Molecules 2005, 10, 545–551; (c)
Giuglio-Tonolo, G.; Terme, T.; Medebielle, M.; Vanelle, P. Tetrahedron Lett. 2004,
45, 5121–5124; (d) Giuglio-Tonolo, G.; Terme, T.; Medebielle, M.; Vanelle, P.
Tetrahedron Lett. 2003, 44, 6433–6435.
15. Montana, M.; Terme, T.; Vanelle, P. Tetrahedron Lett. 2006, 47, 6573–6576.
16. (a) Khoumeri, O.; Giuglio-Tonolo, G.; Crozet, M. D.; Terme, T. M.; Vanelle, P.
Tetrahedron 2011, 67, 6173–6180; (b) Juspin, T.; Giuglio-Tonolo, G.; Terme, T.;
Vanelle, P. Synthesis 2010, 844–848; (c) Montana, M.; Terme, T.; Vanelle, P. Lett.
Org. Chem. 2010, 7, 453–456; (d) Nadji-Boukrouche, A. R.; Khoumeri, O.; Terme,
T.; Liacha, M.; Vanelle, P. ARKIVOC 2010, 10, 358–370; (e) Juspin, T.; Terme, T.;
Vanelle, P. Synlett 2009, 1485–1489; (f) Since, M.; Terme, T.; Vanelle, P.
Tetrahedron 2009, 65, 6128–6134; (g) Montana, M.; Crozet, M. D.; Castera-
Ducros, C.; Terme, T.; Vanelle, P. Heterocycles 2008, 75, 925–932; (h) Roubaud,
C.; Vanelle, P.; Maldonado, J.; Crozet, M. P. Tetrahedron 1995, 51, 9643–9656; (i)
Vanelle, P.; Maldonado, J.; Madadi, N.; Gueiffier, A.; Chapat, J.-P.; Crozet, M. P.
Tetrahedron Lett. 1990, 31, 3013–3016.
17. (a) Kabri, Y.; Gellis, A.; Vanelle, P. Green Chem. 2009, 11, 201–208; (b) Baraldi, P.
G.; El-Kashef, H.; Farghaly, A. R.; Vanelle, P.; Fruttarolo, F. Tetrahedron 2004, 60,
5093–5104; (c) Boufatah, N.; Gellis, A.; Maldonado, J.; Vanelle, P. Tetrahedron
2004, 60, 9131–9137; (d) Crozet, M. P.; Gellis, A.; Pasquier, C.; Vanelle, P.; Aune,
J. P. Tetrahedron Lett. 1995, 36, 525–528; (e) Gellis, A.; Vanelle, P.; Kaafarani, M.;
Benakli, K.; Crozet, M. P. Tetrahedron 1997, 53, 5471–5484; (f) Crozet, M. P.;