H. Tanaka et al. / Tetrahedron Letters 53 (2012) 2493–2495
2495
OH
OBn
OBn
OH
OH
OBn
OBn
OBn
OH
OBn
OBn
H2, Pd(OH)2
TFAA (100 eq.)
Et3SiH (10 L/mol)
CH2Cl2 (100 L/mol)
Br
Br
OBn
OBn
MeOH/THF = 1:1
HO
O
BnO
O
DIC, DMAP
CH2Cl2, r.t.
Br
BnO
O
20 atm, 50 o
C
BnO
O
O
O
O
O
S O
O
-78 oC, 2 h
then r.t., 3 days
58%
1 mg/ml, 1 ml/min
1 cycle, 45%
in H-Cube®
OH
BnO
18 h, 82%
BnO
OH
OBn
OBn
OBn
O
S O
O
BnO
O
OH
OBn
OH
OH
OBn
OBn
OBn
OBn
O
17
4
18
( ) - 2
OBn
OH
OBn
OBn
O
7
OH
OH
OBn
OBn
OBn
OBn
H2, Pd(OH)2
Br
Br
TFAA (50 eq.)
Et3SiH (10 L/mol)
CH2Cl2 (100 L/mol)
MeOH/THF = 1:1 HO
O
OBn
OH
BnO
O
BnO
O
DIC, DMAP
CH2Cl2, r.t.
20 atm, 50 o
C
OBn
OBn
Br
O
O
BnO
O
OH
O
S O
O
1 mg/ml, 1 ml/min
1 cycle, 47%
in H-Cube®
BnO
-78 oC, 0.5 h
then r.t., 27 h
55%
BnO
22 h, 91%
OH
OH
OBn
OBn
OBn
O
O
O
S O
OBn
BnO
OH
OBn
OBn
16
3
19
( ) - 1
Scheme 4. Synthesis of rac-EGCG (( )-(1)) and rac-GCG (( )-(2)).
Synthesis of rac-EGCG (( )-(1)) and rac-GCG (( )-(2)) is shown
in Scheme 4. Acylation of the resulting alcohols 17 and 16 with
the tri-O-benzylgallic acid 7 in the presence of N,N0-diisopropyl
carbodiimide (DIC) provided esters 4 and 3 in 82% and 91% yields,
respectively. We next examined the cyclization of 4 and 3. Treat-
ment of 4 with a large excess of trifluoroacetic anhydride (TFAA)
in a solution of Et3SiH and CH2Cl2 (1:10) at ꢀ78 °C for 2 h, followed
by additional stirring at room temperature for 3 days successfully
provided the protected GCG 18 as a single diastereomer. Based
on the coupling constant between H2 and H3 (JH2-H3 = 6.3 Hz),
the relative stereochemistry between the C2 and C3 positions
was assigned to be trans. Attempts to use trifluoroacetic acid in-
stead of TFAA did not lead to the cyclized products, indicated that
O-acylation of the sulfoxide could be an initial reaction leading to
cyclization. Likewise, treating 3 with 50 equiv. of TFAA in a solu-
tion of Et3SiH and CH2Cl2 (1:10) at ꢀ78 °C for 30 min, followed
by additional stirring at room temperature for 27 h, provided the
protected EGCG 19 as a single diastereomer. To our delight, these
results indicated that epimerization at the C2 position did not oc-
cur during the required reaction conditions. The relative stereo-
chemistry of the cyclized products depended only on that of the
precursors. Deprotection of the protected GCG 18 and EGCG 19
was achieved by hydrogenolysis using a continuous flow hydrogen
reactor H-Cube with a CatCartÒ (70 mm) containing 20% Pd(OH)2/C
at 20 atm at 50 °C provided the racemic GCG 2 and EGCG 1 in 45%
and 47% yields, respectively.12
In conclusion, we have described the synthesis of the racemic
GCG 2 and EGCG 1 by reagent-controlled anti- and syn-epoxide
opening and electrophilic cycloarylation. The epoxide 6 selectively
undergoes anti- and syn-epoxide opening with phenol 5 with base
and without base, respectively. The key S-oxidized S,O-acetals 3
and 4 (1,3-oxathiolane 3-oxides) can generate oxonium cation 9
by treatment with a mixture of Et3SiH and TFAA and undergo
electrophilic cycloarylation without cleavage and epimerization
of the benzylic ethers. This method requires only four diverse
steps from epoxide 6 to the acylated catechins 1 and 2 and would
be effective for the synthesis of various acylated catechin deriva-
Acknowledgment
This work was supported by Grant-in-Aid for Scientific Re-
search (S) (Grant-in-aid No. 22228002) from the Ministry of Educa-
tion, Culture, Sports, Science, and Technology.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Yamamoto, T.; Juneja, L. R.; Chu, D.-C.; Kim, M. Chemistry and Applications of
Green Tea; CRC: Boca Raton, 1997; (b) Stuart, E. C.; Scandlyn, M. J.; Rosengren,
R. J. Life Sci. 2006, 79, 2329.
2. Tachibana, H.; Koga, K.; Fujimura, Y.; Yamada, K. Nat. Struct. Mol. Biol. 2004, 11,
380.
3. (a) Rensburg, H.; Heerden, P. S.; Ferreira, D. J. Chem. Soc. Perkin Trans. 1 1997,
3415; (b) Nay, B.; Arnaudinaud, V.; Peyrat, J. F.; Nuhrich, A.; Deffieux, G.;
Merillon, J. M.; Vercauteren, J. Eur. J. Org. Chem. 2000, 1279; (c) Zaveri, N. T. Org.
Lett. 2001, 3, 843; (d) Li, L.; Chan, T. H. Org. Lett. 2001, 3, 739; (e) Jew, S.-S.; Lim,
D.-Y.; Bae, S.-Y.; Kim, H.-A.; Kim, J.-H.; Lee, J.; Park, H.-G. Tetrahedron:
Asymmetry 2002, 13, 715; (f) Anderson, J. C.; Headley, C.; Stapleton, P. D.;
Taylor, P. W. Tetrahedron 2005, 61, 7703; (g) Wan, S. B.; Dou, Q. P.; Chan, T. H.
Tetrahedron 2006, 62, 5897; (h) Furuta, T.; Hirooka, Y.; Abe, A.; Sugata, Y.; Ueda,
M.; Murakami, K.; Suzuki, T.; Tanaka, K.; Kan, T. Bioorg. Med. Chem. Lett. 2007,
17, 3095.
4. Liu, Y.; Li, Z.; Lin, G.; Xiang, Z.; Xiang, J.; Zhao, M.; Chen, J.; Yang, Z. Z. J. Org.
Chem. 2008, 73, 4625.
5. (a) Ohmori, K.; Takeda, M.; Higuchi, T.; Shono, T.; Suzuki, K. Chem. Lett. 2009,
38, 934; (b) Higuchi, T.; Ohmori, K.; Suzuki, K. Chem. Lett. 2009, 38, 1006; (c)
Ohmori, K.; Yano, T.; Suzuki Org, K. Biomol. Chem. 2010, 8, 2693.
6. (a) Tanaka, H.; Kitade, M.; Ohno, Y.; Tanaka, H.; Takahashi, T. Synlett 2006,
2827; (b) Kitade, M.; Tanaka, H. T. Takahashi Heterocycles 2007, 73, 183; (c)
Tanaka, H.; Miyoshi, H.; Chuang, Y.-C.; Ando, Y.; Takahashi Angew, T. Chem. Int.
Ed. 2007, 46, 5934; (d) Tanaka, H.; Yamanouchi, M.; Miyoshi, H.; Hirotsu, K.;
Tachibana, H.; Takahashi, T. Chem. Asian J. 2010, 5, 2231.
7. Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem. Soc. 1989, 111,
6881.
8. Ohmori, K.; Ushimaru, K.; Suzuki, K. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12002.
9. Kamal, A.; Chouhan, G.; Ahmed, K. Tetrahedron Lett. 2002, 43, 6947.
10. Tadross, P. M.; Gilmore, C. D.; Bugga, P.; Virgil, S. C.; Stoltz, B. M. Org. Lett. 2010,
12, 1224.
11. Pineschi, M.; Bertolini, F.; Haak, R. M.; Crotti, P.; Macchia, F. Chem. Commun.
2005, 1426.
tives composed of
skeleton.
a 2,3-cis- or trans-substituted chroman
12. H-CubeÒ is made by ThalesNano; Richard, V. J.; Norbert, V.; Lajos, G.; Laszlo, U.;
Daniel, S.; Ferenc, D. J. Comb. Chem. 2006, 8, 110.