important and challenging transformation (gave up to
95% yields). Other tested N-heterocycles, including the
1,2,4-triazole, tetrazole, and pyridine, all gave poor results
(<15%) even with similar binding patterns, which high-
lighted the unique role of 1,2,3-triazole ligands in iron
catalysis.
influences the iron cation reactivity, we studied the pro-
pargyl alcohol dehydration for the preparation of conju-
gated enynes (Scheme 2).
Conjugated enynes and enediynes are basic building
blocks in biology,13 material science,14 and fine chemical
synthesis.15 However, there are few available methods for
effective preparation of this synthon. Although special
methods (such as cyclopropane ring-opening) have been
reported for specific substrates,16 the Pd/Cu-catalyzed
vinyl halide/alkyne coupling17 remains the primary avail-
able method, which suffered from limited substrate scope
and was considered less practical for large-scale enyne
preparation. The catalytic propargyl alcohol dehydration
should be one atom-economic and practical approach for
conjugated enyne synthesis. However, this transformation
is challenging and problematic.
Scheme 2. Conjugated Enyne Synthesis: Important but Chal-
lenging Process
In the past several years, our group has been working on
new methods for the preparation of various triazole
derivatives6 and their applications in coordination chem-
istry to form new catalysts/reagents. These efforts led to
the discoveries of triazoleꢀAu7 and triazoleꢀRh catalysts8
and triazoleꢀborane reagent9 with interesting new reactiv-
ities. These encouraging results initiated our interest in
evaluating the influence of 1,2,3-triazole ligands in iron-
based catalysis.
Homogeneousiron catalysisisbecomingmoreattractive
due to the economic benefit (much lower cost compared
with noble metals) and low toxicity.10 Although the iron-
containing catalysts (enzyme) have been long known,11
small organic molecule coordinated iron catalysts are much
less developed.12 One interesting property of iron catalyst is
the dual reactivity, where Fenþ could either serve as Lewis
acid (electron pair receptors) or as redox center through
single electron process. To evaluate how 1,2,3-triazole
Table 1. Direct Propargyl Alcohol Dehydration: A Challenging
Transformationa
entry
catalyst
temp (°C)
convb (%)
yieldc (%)
1
2
TfOH
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
rt
90
10
90
22
80
23
26
78
75
30
52
26
71
30
95
59
32
30
<5
21
<5
15
<5
<5
22
20
<5
<5
<5
9
AlCl3
3
Bi(OTf)3
NiCl3
4
5
In(OTf)3
CeCl3
6
7
LaCl3
8
RuCl3
9
IrCl3
10
11
12
13
14
15
16
17
PdCl2
Cu(OAc)2
Co(OAc)3
Ti(Oi-Pr)4
FeCl2
(6) (a) Liu, Y.; Yan, W.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett.
2008, 10, 5389–5392. (b) Chen, Y.; Liu, Y.; Petersen, J. L.; Shi, X. Chem.
Commun. 2008, 3254–3256. (c) Duan, H.; Yan, W.; Sengupta, S.; Shi, X.
Bioorg. Med. Chem. Lett. 2009, 19, 3899–3902. (d) Yan, W.; Wang, Q.;
Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308–3311. (e) Yan,
W.; Liao, T.; Tuguldur, O.; Zhong, C.; Petersen, J. L.; Shi, X. Chem.
Asian J. 2011, 6, 2720–2724. (f) Yan, W.; Ye, X.; Weise, K.; Petersen,
J. L.; Shi, X. Chem. Commun. 2012, 48, 3521–3523.
(7) (a) Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N.; Shi, X.
J. Am. Chem. Soc. 2009, 131, 12100–12102. (b) Chen, Y.; Yan, W.;
Akhmedov, N.; Shi, X. Org. Lett. 2010, 12, 344–347. (c) Wang, D.; Ye,
X.; Shi, X. Org. Lett. 2010, 12, 2088–2091. (d) Wang, D.; Gautam,
L. N. S.; Bollinger, C.; Harris, A.; Li, M.; Shi, X. Org. Lett. 2011, 13,
2618–2621. (e) Wang, D.; Zhang, Y.; Harris, A.; Gautam, L. N. S.; Shi,
X. Adv. Synth. Catal. 2011, 353, 2584–2588.
<5
29
12
11
FeCl3
Fe(acac)3
FeCl3
a General reaction conditions: 1a (0.25 mmol, 1.0 equiv) and Lewis
acid catalyst (10 mol %) in MeCN (5 mL). b Conversions were deter-
mined on the basis of the consumption of propargyl alcohol. c NMR
yields of 2a with 1,3,5-trimethoxybenzene as internal standard.
(13) (a) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem.
€
Soc. 2002, 124, 773–775. (b) Furstner, A.; Turet, L. Angew. Chem., Int.
(8) Duan, H.; Sengupta, S.; Petersen, J. L.; Shi, X. Organometallics
2009, 2352–2355.
(9) Liao, W.; Chen, Y.; Duan, H.; Liu, Y.; Petersen, J. L.; Shi, X.
Chem. Commun. 2009, 6436–6438.
Ed. 2005, 44, 3462–3466. (c) Cho, E. J.; Lee, D. Org. Lett. 2008, 10, 257–
259. (d) Werness, J. B.; Tang, W. Org. Lett. 2011, 13, 3664–3666.
(14) (a) Pilzak, G. S.; Van Gruijthuijsen, K.; Van Doorn, R. H.; Van
€
Lagen, B.; Sudholter, E. J. R.; Zuilhof, H. Chem.;Eur. J. 2009, 15,
€
(10) (a) Sherry, B. D.; Furstner, A. Acc. Chem. Res. 2008, 41, 1500–
9085–9096. (b) Pasquini, C.; Bassetti, M. Adv. Synth. Catal. 2010, 352,
2405–2410. (c) Cao, Z.; Ren, T. Organometallics 2011, 30, 245–250.
(15) (a) Geny, A.; Gaudrel, S.; Slowinsky, F.; Amatore, M.; Choraqui,
G.; Malacria, M.; Aubert, C.; Gandon, V. Adv. Synth. Catal. 2009,
351, 271–275. (b) Yu, X. Z.; Du, B.; Wang, K.; Zhang, J. L. Org. Lett.
2010, 12, 1876–1879. (c) Tomida, Y.; Nagaki, A.; Yoshida, J. J. Am.
Chem. Soc. 2011, 133, 3744–3747.
1511. (b) Correa, A.; Mancheno, O. G.; Bolm, C. Chem. Soc. Rev. 2008,
37, 1108–1117.
ꢀ
(11) (a) Pitie, M.; Pratviel, G. Chem. Rev. 2010, 110, 1018–1059. (b)
Lai, W. Z.; Shaik, S. J. Am. Chem. Soc. 2011, 133, 5444–5452. (c) Lewis,
J. C.; Coelho, P. S.; Arnold, F. H. Chem. Soc. Rev. 2011, 40, 2003–2021.
€
(12) Recent examples reported by White and Furstner: (a) Chen,
M. S.; White, M. C. Science 2007, 318, 783–787. (b) Chen, M. S.; White,
(16) (a) Yamauchi, Y.; Onodera, G.; Sakata, K.; Yuki, M.; Miyake,
Y.; Uemura, S.; Nishibayashi, Y. J. Am. Chem. Soc. 2007, 129, 5175–
5179. (b) Mothe, S. R.; Chan, P. W. H. J. Org. Chem. 2009, 74, 5887–
5893.
€
M. C. Science 2010, 327, 566–571. (c) Furstner, A.; Krause, H.;
€
Lehmann, C. W. Angew. Chem., Int. Ed. 2006, 45, 440–444. (d) Furstner,
A. Angew. Chem., Int. Ed. 2009, 48, 1364–1367.
Org. Lett., Vol. 14, No. 9, 2012
2359