The Journal of Organic Chemistry
Note
then extracted with ethyl acetate. The solvent was evaporated under
vacuum. The residue was purified by silica gel column chromatography
(hexane/ethyl acetate 5:1) to give 3,6-bis(2-(triisopropylsilylethynyl)-
AUTHOR INFORMATION
■
Corresponding Author
1
phenyl)carbazole as a pale yellow oil (298 mg, 91%): H NMR (500
MHz, CDCl3) δ 8.42 (d, J = 1 Hz, 2H), 8.11 (s, 1H), 7.72 (dd, J = 8, 1
Hz, 2H), 7.64 (dd, J = 7, 1 Hz, 2H), 7.48 (dd, J = 8, 1 Hz, 2H), 7.43
(d, J = 8 Hz, 2H), 7.39 (ddd, J = 8, 1 Hz, 2H), 7.28 (ddd, J = 7, 1 Hz,
2H), 0.94 (m, 21 H); 13C NMR (125 MHz, CDCl3) δ 145.3, 139.5,
134.1, 132.4, 130.0, 128.7, 127.9, 126.5, 123.7, 122.4, 121.5, 110.0,
107.0, 93.7, 18.7, 17.9, 12.5, 11.5; HRMS (ESI-TOF-MS) calcd for
C46H57NSi2 + Na 702.3922, found m/z = 702.3916 [M + Na+].
3,6-Bis(2-ethynylphenyl)carbazole (6). To a solution of 3,6-bis(2-
(triisopropylsilylethynyl)phenyl)carbazole 5 (260 mg, 0.38 mmol) in
THF (8 mL) was added 1 M TBAF in THF (0.36 mL, 0.36 mmol) at
room temperature. After stirred for 21 h at room temperature, the
reaction mixture was washed with water (×2) and brine and then
extracted with ethyl acetate. The organic phase was dried over Na2SO4,
and the solvent was evaporated to dryness. Silica gel column
chromatography (hexane/ethyl acetate 1:4) of the residue gave 3,6-
bis(2-ethynylphenyl)carbazole as a pale yellow solid (118 mg, 84%):
1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 1 Hz, 2H), 8.15 (s, 1H),
7.68 (dd, J = 9, 2 Hz, 2H), 7.66 (d, J = 7 Hz, 2H), 7.51−7.43 (m, 4H),
7.44 (ddd, J = 7, 1 Hz, 2H), 7.31 (ddd, J = 7, 1 Hz, 2H); 13C NMR
(125 MHz, CDCl3) δ 145.2, 139.4, 133.9, 131.9, 130.0, 129.0, 127.5,
126.5, 123.4, 121.2, 120.6, 110.1, 83.6, 79.9; HRMS (ESI-TOF-MS)
calcd for C28H17N + Na 390.1253, found m/z = 390.1251 [M + Na+].
Macrocycles 1 and 2. 3,6-Bis(2-ethynylphenyl)carbazole 6 (97.0
mg, 0.27 mmol) and Cu(OAc)2·2H2O (299 mg, 1.6 mmol) were
dissolved in pyridine (20 mL) and diethyl ether (7 mL). The mixture
was stirred at room temperature under air for 44 h. The reaction
mixture was washed with saturated aqueous NH4Cl (×2) and then
extracted with ethyl acetate. The organic phase was dried over Na2SO4,
and the solvent was removed under vacuum. The residue was
subjected to silica gel chromatography (hexane/ethyl acetate 3:1 then
2:1) to afford 1 and 2 from different fractions. Each product was
washed with a small amount of acetonitrile to give 1 as a yellow solid
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research on Innovation Areas, “Coordination Programming”
(22108509) from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan. T.I. acknowledges a Research
Fellowship for Young Scientists from the Japan Society for the
Promotion of Science.
REFERENCES
■
(1) (a) Cram, D. J.; Cram, J. M. Acc. Chem. Res. 1971, 4, 204−213.
(b) Kawase, T.; Kurata, H. Chem. Rev. 2006, 106, 5250−5273.
(c) Jasti, R.; Bertozzi, C. R. Chem. Phys. Lett. 2010, 494, 1−7.
(d) Iyoda, M.; Yamakawa, J.; Rahman, M. J. Angew. Chem., Int. Ed.
2011, 50, 10522−10553.
(2) (a) Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. J. Am.
Chem. Soc. 2008, 130, 17646−17647. (b) Yamago, S.; Watanabe, Y.;
Iwamoto, T. Angew. Chem., Int. Ed. 2010, 49, 757−759. (c) Omachi,
H.; Matsuura, S.; Segawa, Y.; Itami, K. Angew. Chem., Int. Ed. 2010, 49,
10202−10205. (d) Iwamoto, T.; Watanabe, Y.; Sakamoto, Y.; Suzuki,
T.; Yamago, S. J. Am. Chem. Soc. 2011, 133, 8354−8361. (e) Sisto, T.
J.; Golder, M. R.; Hirst, E. S.; Jasti, R. J. Am. Chem. Soc. 2011, 133,
15800−15802.
(3) Setaka, W.; Kanai, S.; Kabuto, C.; Kira, M. Chem. Lett. 2006, 35,
1364−1365.
(4) (a) Brown, C. J.; Farthing, A. C. Nature 1949, 164, 915−916.
(b) Kawase, T.; Ueda, N.; Darabi, H. R.; Oda, M. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1556−1558. (c) Kawase, T.; Darabi, H. R.; Oda, M.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2664−2666. (d) Collins, S. K.;
Yap, G. P. A.; Fallis, A. G. Angew. Chem., Int. Ed. 2000, 39, 385−388.
(e) Seiders, T. J.; Baldridge, K. K.; Siegel, J. S. Tetrahedron 2001, 57,
3737−3742. (f) Hisaki, I.; Eda, T.; Sonoda, M.; Tobe, Y. Chem. Lett.
2004, 33, 620−621. (g) Merner, B. L.; Dawe, L. N.; Bodwell, G. J.
Angew. Chem., Int. Ed. 2009, 48, 5487−5491. (h) Standera, M.;
1
(35.4 mg, 38%) and 2 as an ivory solid (10.1 mg, 10%). 1: H NMR
(500 MHz, THF-d8) δ 10.43 (s, 1H), 8.84 (d, J = 1 Hz, 2H), 7.86 (d, J
= 8 Hz, 2H), 7.54 (d, J = 8 Hz, 2H), 7.46 (ddd, J = 7, 1 Hz, 2H), 7.40
(d, J = 8 Hz), 7.38 (dd, J = 8, 2 Hz, 2H), 7.25 (ddd, J = 7, 1 Hz, 2H);
13C NMR (125 MHz, CDCl3) δ 146.9, 142.9, 133.7, 130.3, 130.3,
128.7, 127.0, 126.9, 125.1, 124.9, 122.0, 112.0, 88.2, 80.5; HRMS (ESI-
TOF-MS) calcd for C28H15N + Na 388.1097, found m/z = 388.1108
Hafliger, R.; Gershoni-Poranne, R.; Stanger, A.; Jeschke, G.; van Beek,
̈
1
[M + Na+]. 2: H NMR (500 MHz, THF-d8, 60 °C) δ 10.0 (s, 2H),
J. D.; Bertschi, L.; Schluter, A. D. Chem.Eur. J. 2011, 17, 12163−
̈
7.85 (s, 4H), 7.57 (d, J = 8 Hz, 4H), 7.48 (d, J = 8 Hz, 4H), 7.40 (m,
12H), 7.24 (ddd, J = 7, 2 Hz, 4H); 13C NMR (125 MHz, CDCl3) δ
147.9, 141.2, 134.6, 132.4, 130.8, 129.7, 127.1, 124.6, 122.4, 120.9,
110.7, 82.1, 76.9; HRMS (ESI-TOF-MS) calcd for C56H30N2 + Na
753.2301, found m/z = 753.2294 [M + Na+]. Melting point of 1 was
not determined by DSC measurement probably because of thermal
decomposition.
Computational Methods. Geometry optimization was performed
by BLYP-D3/def2-SVP level of theory with the resolution of the
identity (RI) approximation. Stationary points were characterized by
Hessian calculation. Single point energies were obtained by B2GP-
PLYP-D3/def2-TZVPP together with RIJCOSX and RI approxima-
tion. Kohn−Sham orbitals were calculated by B3LYP/def2-SVP level
of theory. TD-DFT calculations within the Tamm−Dancoff
approximation (TD-DFT/TDA) were carried out by BHLYP/def2-
TZVP level of theory in combination with RIJONX approximation. All
calculations were performed by ORCA 2.8.0.2. The plots (isosurface =
0.03) of the frontier orbitals were drawn by VESTA 3.12
12174.
(5) (a) Nakao, K.; Nishimura, M.; Tamachi, T.; Kuwatani, Y.;
Miyasaka, H.; Nishinaga, T.; Iyoda, M. J. Am. Chem. Soc. 2006, 128,
16740−16747. (b) O’Connor, M. J.; Yelle, R. B.; Zakharov, L. N.;
Haley, M. M. J. Org. Chem. 2008, 73, 4424−4432. (c) Zhang, F.; Gotz,
G.; Winkler, H. D. F.; Schalley, C. A.; Bauerle, P. Angew. Chem., Int. Ed.
2009, 48, 6632−6635. (d) O’Sullivan, M. C.; Sprafke, J. K.; Kondratuk,
D. V.; Rinfray, C.; Claridge, T. D. W.; Saywell, A.; Blunt, M. O.;
O’Shea, J. N.; Beton, P. H.; Malfois, M.; Anderson, H. L. Nature 2011,
469, 72−75. (e) Sprafke, J. K.; Kondratuk, D. V.; Wykes, M.;
Thompson, A. L.; Hoffmann, M.; Drevinskas, R.; Chen, W.-H.; Yong,
̈
̈
C. K.; Karnbratt, J.; Bullock, J. E.; Malfois, M.; Wasielewski, M. R.;
̈
Albinsson, B.; Herz, L. M.; Zigmantas, D.; Beljonne, D.; Anderson, H.
L. J. Am. Chem. Soc. 2011, 133, 17262−17273.
(6) Zhou, Q.; Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59,
1294−1301.
(7) (a) George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M.
Tetrahedron 1976, 32, 317−323. (b) George, P.; Trachtman, M.; Brett,
A. M.; Bock, C. W. J. Chem. Soc., Perkin Trans. 2 1977, 1036−1047.
ASSOCIATED CONTENT
̀
(8) (a) Karton, A.; Tarnopolsky, A.; Lamere, J.-F.; Schatz, G. C.;
■
Martin, J. M. L. J. Phys. Chem. A 2008, 112, 12868−12886.
(b) Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2011, 7, 291−
309.
S
* Supporting Information
NMR spectra, crystallographic parameters, and computational
detail. This material is available free of charge via the Internet at
(9) Neese, F. ORCA, version 2.8.0.2; University of Bonn: Bonn,
4840
dx.doi.org/10.1021/jo300441k | J. Org. Chem. 2012, 77, 4837−4841