photogenerated acids, Nucleic Acids Res., 2001, 29, 4744; R. J. Lipshutz,
S. P. A. Fodor, T. R. Gingeras and D. J. Lockhart, High density synthetic
oligonucleotide arrays, Nat. Genet., 1999, 21, 20; M. C. Pirrung,
L. Fallon and G. J. McGall, Proofing of Photolithographic DNA Syn-
thesis with 3′,5′-Dimethoxybenzoinyloxycarbonyl-Protected Deoxy-
nucleoside Phosphoramidites, J. Org. Chem., 1998, 63, 241;
Y. Kobayashi, M. Sakai, A. Ueda, K. Maruyama, T. Saiki and K. Suzuki,
Writing and Reading Methodology for Biochips with Sub-100-nm
Chemical Patterns Based on Near-Field Scanning Optical Microscopy,
Anal. Sci., 2008, 24, 571.
6 J. P. Colletier, A. Royant, A. Specht, B. Sanson, F. Nachon, P. Masson,
G. Zaccai, J. L. Sussman, M. Goeldner, I. Silman, D. Bourgeois and
M. Weik, Use of a “caged” analogue to study the traffic of choline within
acetylcholinesterase by kinetic crystallography, Acta Crystallogr., Sect. D:
Biol. Crystallogr., 2007, 63, 1115; D. Bourgeois and A. Royant,
Advances in kinetic protein crystallography, Curr. Opin. Struct. Biol.,
2005, 15, 538; V. Srajer, T.-Y. Teng, T. Ursby, C. Pradervand, Z. Ren, S.-
I. Adachi, W. Schildkamp, D. Bourgeois, M. Wulff and K. Moffat, Pho-
tolysis of the carbon monoxide complex of myoglobin: nanosecond time-
resolved crystallography, Science, 1996, 274, 1726; I. Schlichting, S.
C. Almo, G. Rapp, K. Wilson, K. Petratos, A. Lentfer, A. Wittinghofer,
W. Kabsch, E. F. Pai, G. A. Petsko and R. S. Goody, Time-resolved X-ray
crystallographic study of the conformational change in Ha-Ras p21
protein on GTP hydrolysis, Nature, 1990, 345, 309.
7 C. Muller, P. Even, M.-L. Viriot and M.-C. Carre, Protection and Label-
ling of Thymidine by a Fluorescent Photolabile Group, Helv. Chim. Acta,
2001, 84, 3735–3741; K. Burgess, S. E. Jacutin, D. Lim and
A. Shitangkoon, An Approach to Photolabile, Fluorescent Protecting
Groups, J. Org. Chem., 1997, 62, 5165–5168; X. J. Tang and I.
J. Dmochowski, Phototriggering of CagedFluorescent Oligodeoxynucleo-
tides, Org. Lett., 2005, 7, 279.
8 M. J. G. Fernandes, M. S. Goncalves and S. P. G. Costa, Comparative
study of polyaromatic and polyheteroaromatic fluorescent photocleavable
protecting groups, Tetrahedron, 2008, 64, 3032–3038; A. Jana, S. Atta,
S. K. Sarkar and N. D. P. Singh, 1-Acetylpyrene with dual functions as
an environment-sensitive fluorophore and fluorescent photoremovable
protecting group, Tetrahedron, 2010, 66, 9798–9807; M. Iwamura,
C. Hodota and M. Ishibashi, 1-(a-Diazobenzyl)pyrene: A Reagent for
Photolabile and Fluorescent Protection of Carboxyl Groups of Amino
Acids and Peptides, Synlett, 1991, 35–36; A. K. Sing and P. K. Khade,
Anthracene-9-methanol-a novel fluorescent phototrigger for biomolecular
caging, Tetrahedron Lett., 2005, 46, 5563–5566; A. M. Piloto,
A. M. S. Soares, G. Hungerford, S. P. G. Costa and M. S. Goncalves,
Long-Wavelength Photolysis of Amino Acid 6-(Methoxy-2-oxo-2H-
naphtho[1,2-b]pyran-4-yl)methyl Esters, Eur. J. Org. Chem., 2011,
5447–51.
100 μM aqueous solution of DNS-NQMP-caged thymidine 1c
was irradiated with 300 nm light to achieve full conversion to
thymidine 8c and DNS-NQMP diol 2. The fluorescence spectra
of solutions before and after irradiation were compared to that of
100 μM solution of the parent diol 2 (Fig. 3). The resulting
spectra are essentially identical indicating that dansyl chromo-
phore is not affected by the uncaging photolysis and providing
additional support for the absence of the energy transfer between
the caged substrate and fluorophore.
Conclusion
In summary, the bichromophoric fluorescent photolabile protect-
ing group (FPPG) containing separate dansyl fluorophore and
NQMP caging moiety has been developed. This DNS-NQMP
group allows for the independent fluorescent imaging of caged
molecules and photochemical release of the substrates. The
DNS-NQMP-caged compounds are stable during fluorescence
measurements and the fluorescence of dansyl group does not
fade during photo-release process. Intense fluorescence of
DNS-NQMP group permits visualization of the caged substrates
in biological systems and monitoring the uncaging progress in
solid-state syntheses (e.g., in oligonucleotide or peptide prep-
aration), as well as simplifies isolation of released substrate.
Compatibility of this FPPG with aqueous solutions makes it
especially suitable for biochemical applications. Very fast sub-
strate release can be useful for time-resolved studies.
Acknowledgements
Authors thank National Science Foundation (CHE-0842590) and
donors of the ACS Petroleum Research Fund (48353-AC4) for
the support of this project.
References
1 T. W. Greene and P. G. M. Wuts, Protective groups in Organic Synthesis,
Wiley, New York, 1991.
2 A. P. Pelliccioli and J. Wirz, Photoremovable protecting groups: reaction
mechanisms and applications, Photochem. Photobiol. Sci., 2002, 1, 441;
C. G. Bochet, Photolabile protecting groups and linkers, J. Chem. Soc.,
Perkin Trans. 1, 2002, 125.
3 Biological Applications of Photochemical Switches, ed. H. Morrison,
Wiley, New York, 1993; Dynamic Studies in Biology, ed. M. Goeldner
and R. Givens, Wiley, Weinheim, 2005; G. Mayer and A. Heckel, Bio-
logically Active Molecules with a “Light Switch”, Angew. Chem., Int.
Ed., 2006, 45, 4900–49021.
4 V. N. R. Pillai, Photoremovable Protecting Groups in Organic Synthesis,
Synthesis, 1980, 1; V. N. R. Pillai, in Organic Photochemistry, A. Padwa,
ed. Marcel Dekker, New York, 1987, Vol. 9, pp. 225–323.
5 S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu and
D. Solas, Light-directed, spatially addressable parallel chemical synthesis,
Science, 1991, 251, 767; M. J. Heller, DNA MICROARRAY TECH-
NOLOGY: Devices, Systems, and Applications, Annu. Rev. Biomed.
Eng., 2002, 4, 129; X. Gao, E. LeProust, H. Zhang, O. Srivannavit,
E. Gulari, P. Yu, C. Nishiguchi, Q. Xiang and Z. Xiaochuan, A flexible
light-directed DNA chip synthesis gated by deprotection using solution
9 B. Schade, V. Hagen, R. Schmidt, R. Herbrich, E. Krause, T. Eckardt and
J. Bendig, Deactivation Behavior and Excited-State Properties of (Cou-
marin-4-yl)methyl Derivatives. 1. Photocleavage of (7-Methoxycou-
marin-4-yl)methyl-Caged Acids with Fluorescence Enhancement, J. Org.
Chem., 1999, 64, 9109–9117; V. Hagen, B. Dekowski, V. Nache,
R. Schmidt, D. Geissler, D. Lorenz, J. Eichhorst, S. Keller, H. Kaneko,
K. Benndorf and B. Wiesner, Coumarinylmethyl Esters for Ultrafast
Release of High Concentrations of Cyclic Nucleotides upon One- and
Two-Photon Photolysis, Angew. Chem., Int. Ed., 2005, 44, 7887–91.
10 A. Kulikov, S. Arumugam and V. V. Popik, Photolabile Protection of
Alcohols, Phenols, and Carboxylic Acids with 3-Hydroxy-2-Naphthale-
nemethanol, J. Org. Chem., 2008, 73, 7611–7615.
11 S. Arumugam and V. V. Popik, Light-Induced Hetero-Diels–Alder Cyclo-
addition: A Facile and Selective Photoclick Reaction, J. Am. Chem. Soc.,
2011, 133, 5573–5579.
12 See the ESI†.
13 S. L. Murov, I. Carmichael and G. L. Hug, in Handbook of Photochemis-
try, Marcel Dekker, New York, 1993, p. 299.
14 S. Arumugam and V. V. Popik, Photochemical Generation and the Reac-
tivity of o-Naphthoquinone Methides in Aqueous Solutions, J. Am.
Chem. Soc., 2009, 131, 11892–11899.
This journal is © The Royal Society of Chemistry and Owner Societies 2012
Photochem. Photobiol. Sci., 2012, 11, 518–521 | 521