grant No. 20833008), NKBRSF (grant No. 2007CB815202),
the Innovation Projects of the Chinese Academy of Sciences
(grant No. KZCX2-EW-206), and the 100 Talents Program of
the Chinese Academy of Sciences.
Notes and references
1 (a) A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson,
A. J. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice,
Chem. Rev., 1997, 97, 1515; (b) H. N. Kim, M. H. Lee, K. J. Kim,
J. S. Kim and J. Yoon, Chem. Soc. Rev., 2008, 37, 1465;
(c) D. W. Domaille, E. L. Que and C. J. Chang, Nat. Chem. Biol.,
2008, 4, 168; (d) E. L. Que, D. W. Domaille and C. J. Chang,
Chem. Rev., 2008, 108, 1517.
2 (a) D. Buccella, J. A. Horowitz and S. J. Lippard, J. Am. Chem.
Soc., 2011, 133, 4101; (b) C. J. Chang, J. Jaworski, E. M. Nolan,
M. Sheng and S. J. Lippard, Proc. Natl. Acad. Sci. U. S. A., 2004,
101, 1129; (c) E. L. Que and C. J. Chang, J. Am. Chem. Soc., 2006,
128, 15942.
Fig. 4 The relationship between average fluorescence intensity
and added various Fe3+ concentrations in Fig. 3b–f correspondingly.
The whole regions in the visual field (Fig. 3b–f) were selected as
the region of interest (ROI), and the average fluorescence intensity was
determined via confocal laser-scanning microscopy.
3 (a) E. Beutler, Science, 2004, 306, 2051; (b) S. D. Dai,
C. Schwendtmayer, P. Schurmann, S. Ramaswamy and
H. Eklund, Science, 2000, 287, 655; (c) A. V. Goldberg,
S. Molik, A. D. Tsaousis, K. Neumann, G. Kuhnke, F. Delbac,
C. P. Vivares, R. P. Hirt, R. Liu and T. M. Embley, Nature, 2008,
452, 624.
4 (a) C. D. Kaplan and J. Kaplan, Chem. Rev., 2009, 109,
4536; (b) E. C. Theil and D. J. Goss, Chem. Rev., 2009,
109, 4568; (c) A. Atkinson and D. R. Winge, Chem. Rev., 2009,
109, 4708.
5 (a) K. R. Bridle, D. M. Frazer and S. J. Wilkins, Lancet, 2003,
361, 669; (b) F. Bousejra-ElGarah, C. Bijani, Y. Coppel, P. Faller
and C. Hureau, Inorg. Chem., 2011, 50, 9024; (c) J. Morrissey and
M. L. Guerinot, Chem. Rev., 2009, 109, 4553; (d) L. A. Ba,
M. Doering, T. Burkholz and C. Jacob, Metallomics, 2009, 1, 292.
6 R. McRae, P. Bagchi, S. Sumalekshmy and C. J. Fahrni, Chem.
Rev., 2009, 109, 4780.
Fig. 5 Confocal fluorescence images of MCF-7 cells incubated with
BOD-NHOH (10.0 mM) and rhodamine 6G (1.0 mM) for 15 min. Cells
loaded with Fe3+ (10 mM) for 30 min, then treated with BOD-NHOH
(10.0 mM) and rhodamine 6G (1.0 mM) for 15 min. (a) Green channel
with rhodamine 6G. (b) Red channel with BOD-NHOH. (c) Overlay
of images showing fluorescence from rhodamine 6G (b) and BOD-
NHOH (c). Scale bar is 20 mm.
7 T. Ueno and T. Nagano, Nat. Methods, 2011, 8, 642. See ESIw.
8 R. Y. Tsien, L. Ernst and A. Waggoner, Fluorophores for confocal
microscopy: photophysics and photochemistry, in Handbook
of Biological Confocal Microscopy, ed. J. B. Pawley, Springer
Science + Business Media, New York, 3rd edn, 2006, p. 338.
9 (a) B. Bodenant, F. Fages and M. H. Delville, J. Am. Chem. Soc.,
1998, 120, 7511; (b) J. N. Yao, W. Dou, W. W. Qin and W. S. Liu,
Inorg. Chem. Commun., 2009, 12, 116.
region of interest (ROI), and the average fluorescence intensity
was determined via confocal laser-scanning microscopy with
various Fe3+ concentrations (Fig. 4). The results suggest that
BOD-NHOH has good membrane permeability, and these data
also establish that BOD-NHOH can respond to intracellular
Fe3+ level changes within living cells.
10 B. D. Wang, J. Hai, Z. C. Liu, Q. Wang, Z. Y. Yang and S. H. Sun,
We now applied BOD-NHOH to probe the subcellular
locations of Fe3+ in the MCF-7 cells using confocal fluores-
cence microscopy. Under the same conditions used in Fig. 3e,
the cells were co-stained with BOD-NHOH (10.0 mM) and
rhodamine 6G (1.0 mM) for 15 min. Fig. 5 further revealed
the location of the probe in the cytoplasm of the living
MCF-7 cells.
Angew. Chem., Int. Ed., 2010, 49, 4576. See ESIw.
11 (a) H. Weizman, O. Ardon, B. Mester, J. Libman, O. Dwir,
Y. Hadar, Y. Chen and A. Shanzer, J. Am. Chem. Soc., 1996,
118, 12368; (b) L. Ma, W. Luo, P. J. Quinn, Z. Liu and
R. C. Hider, J. Med. Chem., 2004, 47, 6349.
12 (a) M. A. Mortellaro and D. G. Nocera, J. Am. Chem. Soc., 1996,
118, 7414; (b) K. Rurack, M. Kollmannsberger, U. Resch-Genger
and J. Daub, J. Am. Chem. Soc., 2000, 122, 968.
13 D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch,
Fundamentals of Analytical Chemistry, Thomson Brooks Cole,
Belmont, 8th edn, 2004, p. 554.
14 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 2012,
41, 1130.
15 (a) G. Bengtsson, S. Fronaeus and L. Bengtsson-Kloo, J. Chem.
Soc., Dalton Trans., 2002, 2548; (b) J. H. Butler and L. I. Gordon,
Inorg. Chem., 1986, 25, 4573; (c) A. Cladera, E. Gomez,
J. M. Estela and V. Cerda, Analyst, 1991, 116, 913.
16 C. Kashima, N. Yoshiwara and Y. Omote, Tetrahedron Lett.,
1982, 23, 2955.
17 (a) R. Wang, C. Yu, F. Yu and L. Chen, TrAC, Trends Anal.
Chem., 2010, 29, 1004; (b) B. Tang, F. Yu, P. Li, L. Tong, X. Duan,
T. Xie and X. Wang, J. Am. Chem. Soc., 2009, 131, 3016.
18 C. M. Flynn Jr., Chem. Rev., 1984, 84, 31.
19 E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi,
Y. Hirata and T. Nagano, J. Am. Chem. Soc., 2005, 127, 3684.
In summary, we have developed a new fluorescent probe
that exhibits high sensitivity and selectivity for monitoring
Fe3+ both in aqueous solution and living cells. The probe
exhibits a turn-on fluorescent response upon detecting Fe3+
compared to other biologically relevant metal ions. Confocal
microscopy images indicate that BOD-NHOH can be used for
detecting changes in Fe3+ levels within living cells. To the best of
our knowledge, this is the first example of a fluorescence probe
that can be used to successfully detect Fe3+ based on hydroxyl-
amine oxidation both in aqueous solution and living cells. We
anticipate that the new probe will lead to many new opportunities
for studying the biological effect of Fe3+ in living cells.
This work was financially supported by the National
Natural Science Foundation of China (grant No. 20975089,
c
5312 Chem. Commun., 2012, 48, 5310–5312
This journal is The Royal Society of Chemistry 2012