10.1002/adsc.202000945
Advanced Synthesis & Catalysis
could suppress the formation of dimer 6, because
dimerization is sensitive to the concentration of the
radical species in comparison to the other reaction
pathways. Indeed, at 50 °C, the yield of 6 dramatically
decreased to 4% while that of 3ah increased to 54%
(entry 5).
In conclusion, we have developed a Ni-catalyzed
radical cross-coupling between benzyl alcohols and
alkenyl bromides. The reaction tolerates various
benzyl alcohols, including those with bromo and
boronic ester groups. The low sensitivity to the
substitution pattern of the alkene moiety in alkenyl
bromides promises a broad scope of alkenes. An
attempt with the tri-substituted alkenyl bromide
provided new insights into the challenging and
sterically demanding cross-coupling reaction. We
hope that this study will lead to the development of an
alcohol-based radical strategy for transition metal-
catalyzed alkenylation.
Molander, O. Gutierrez, J. Am. Chem. Soc. 2020, 142,
7225-7234.
[3] a) C. Lévêque, C. Ollivier, L. Fensterbank, M. J.
Goldfogel, L. Huang, D. J. Weix in Nickel Catalysis in
Organic Synthesis: Methods and Reactions (Ed.: S.
Ogoshi), Wiley-VCH, Weinheim, 2019, pp. 151-222; b)
A. Kaga, S. Chiba, ACS Catal. 2017, 7, 4697-4706; c) E.
Richmond, J. Moran, Synthesis 2018, 50, 499-513; d) J.
A. Milligan, J. P. Phelan, S. O. Badir, G. A. Molander,
Angew. Chem. Int. Ed. 2019, 58, 6152-6163; Angew.
Chem. 2019, 131, 6212-6224.
[4] a) J. C. Tellis, D. N. Primer, G. A. Molander, Science
2014, 345, 433-436; b) Z. Zuo, D. T. Ahneman, L. Chu,
J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science
2014, 345, 437-440; c) V. Corcé, L.-M. Chamoreau, E.
Derat, J.-P. Goddard, C. Ollivier, L. Fensterbank,
Angew. Chem. Int. Ed. 2015, 54, 11414-11418; Angew.
Chem. 2015, 127, 11576-11580; d) K. Nakajima, S.
Nojima, Y. Nishibayashi, Angew. Chem. Int. Ed. 2016,
55, 14106-14110; Angew. Chem. 2016, 128, 14312-
14316; e) Á. Gutiérrez-Bonet, J. C. Tellis, J. K. Matsui,
B. A. Vara, G. A. Molander, ACS Catal. 2016, 6, 8004-
8008; f) X. Zhang, D. W. C. MacMillan, J. Am. Chem.
Soc. 2016, 138, 13862-13865.
Experimental Section
General procedure for cross-coupling: The representative
procedure using 1a and 2a is as follows; to a dried test tube,
Mn
powder
(44
mg,
0.80
mmol)
and
NiCl₂ (Me₄ Phen)•2H₂ O (7.3 mg, 0.018 mmol) were
added under air atmosphere, and the gaseous phase was
replaced with argon. Next, TiCl4(lutidine) (131 mg, 0.44
mmol), THF (1.0 mL) and 2,6-lutidine (92 µL, 0.80 mmol)
were added, and the mixture was stirred for 10 min. To this,
THF (1.0 mL) solution of 2-naphthalenemethanol (1a, 63
mg, 0.40 mmol) and (E)-1-bromo-1-hexene (2a, 65 μL, 0.48
mmol) were added dropwise while stirring the mixture
vigorously. Following this, the mixture was stirred at 70 ºC
for 20 h. After cooling, hexane/ethyl acetate (1/1 (v/v), ca.
2 mL) was added. The mixture was stirred under air until the
black color almost disappeared. The gray precipitate formed
was filtered with a short plug of silica gel (hexane/ethyl
acetate 1/1 (v/v) as an eluent), and the resulting solution was
concentrated under reduced pressure. The crude product
was purified by preparative TLC (hexane) to afford the
coupling product 3aa as a pale-yellow oil (68.2 mg, 76%
yield).
[5] T. Suga, Y. Ukaji, Org. Lett. 2018, 20, 7846-7850.
[6] a) B. Sundararaju, M. Achard, C. Bruneau, Chem. Soc.
Rev. 2012, 41, 4467-4483; b) T. Irrgang, R. Kempe,
Chem. Rev. 2019, 119, 2524-2549; c) L. Alig, M. Fritz,
S. Schneider, Chem. Rev. 2019, 119, 2681-2751.
[7] Cross-coupling reaction using benzyl alcohols: a) D.-G.
Yu, X. Wang, R.-Y. Zhu, S. Luo, X.-B. Zhang, B.-Q.
Wang, L. Wang, Z.-J. Shi, J. Am. Chem. Soc. 2012, 134,
14638-14641; b) Z.-C. Cao, D.-G. Yu, R.-Y. Zhu, J.-B.
Wei, Z.-J. Shi, Chem. Commun. 2015, 51, 2683-2686; c)
V. K. Chenniappan, D. Peck, R. Rahaim, Tetrahedron
Lett. 2020, 61, 151729.
[8] Selected examples of other Ni/Ti/reductant systems: a)
A. G. Campaꢀa, B. Bazdi, N. Fuentes, R. Robles, J. M.
Cuerva, J. E. Oltra, S. Porcel, A. M. Echavarren, Angew.
Chem. Int. Ed. 2008, 47, 7515−7519; Angew. Chem.
2008, 120, 7625-7629; b) A. Millꢁn, L. Á. de Cienfuegos,
D. Miguel, A. G. Campaꢀa, J. M. Cuerva, Org. Lett.
2012, 14, 5984-5987; c) Y. Zhao, D. J. Weix, J. Am.
Chem. Soc. 2015, 137, 3237-3240; d) V. K.
Chenniappan, S. Silwal, R. J. Rahaim, ACS Catal. 2018,
8, 4539-4544. e) Z. Lin, Y. Lan, C. Wang, Org. Lett.
2019, 21, 8316-8322.
Acknowledgements
This work was supported in part by Mitsui Chemicals Award in
Synthetic Organic Chemistry, Japan; UBE Industries Foundation
Award; Hokuriku Bank Research Grant for Young Scientists; and
the Kanazawa University SAKIGAKE project.
References
[1] a) M. Amatore, C. Gosmini, Chem. Eur. J. 2010, 16,
5848-5852; b) D. A. Everson, R. Shrestha, D. J. Weix, J.
Am. Chem. Soc. 2010, 132, 920-921.
[9] a) M. E. Layton, C. A. Morales, M. D. Shair, J. Am.
Chem. Soc. 2002, 124, 773-775; b) L. F. Tietze, J. M.
Wiegand, C. A. Vock, Eur. J. Org. Chem. 2004, 4107-
4112; c) Y. Suto, M. Sato, K. Fujimori, S. Kitabatake,
M. Okayama, D. Ichikawa, M. Matsushita, N.
Yamagiwa, G. Iwasaki, F. Kiuchi, Y. Hattori, Bioorg.
Med. Chem. Lett. 2017, 27, 4558-4563.
[2] Recent mechanistic studies: a) S. KC, R. K. Dhungana,
B. Shrestha, S. Thapa, N. Khanal, P. Basnet, R. W.
Lebrun, R. Giri, J. Am. Chem. Soc. 2018, 140, 9801-
9805; b) X. Wang, G. Ma, Y. Peng, C. E. Pitsch, B. J.
Moll, T. D. Ly, X. Wang, H. Gong, J. Am. Chem. Soc.
2018, 140, 14490-14497; c) J. B. Diccianni, J. Katigbak,
C. Hu, T. Diao, J. Am. Chem. Soc. 2019, 141, 1788-
1796; d) Q. Lin, T. Diao, J. Am. Chem. Soc. 2019, 141,
17937-17948; e) M. Yuan, Z. Song, S. O. Badir, G. A.
[10] a) Z. Dong, G. Manolikakes, J. Li, P. Knochel,
Synthesis 2009, 681-686; b) A. Desaintjean, S.
Belrhomari, L. Rousseau, G. Lefèvre, P. Knochel, Org.
Lett. 2019, 21, 8684-8688.
4
This article is protected by copyright. All rights reserved.