Michael J. Ardolino et al.
COMMUNICATIONS
found to connected with the correct ground states through
IRC calculations. NBO analysis was carried out with Gaussi-
an NBO version 3.1.[32] The three-dimensional structures
presented in Figure 1 were visualized utilizing CYLview.[33]
1996, 15, 164; d) K. Tsutsumi, T. Kawase, T. Kakiuchi,
S. Ogoshi, Y. Okada, H. J. Kurosawa, Bull. Chem. Soc.
Jpn. 1999, 72, 2687.
[8] a) E. Keinan, M. Peretz, J. Org. Chem. 1983, 48, 5302;
b) C. J. Elsevier, H. H. Mooiweer, H. Kleijnm, P. Ver-
meer, Tetrahedron Lett. 1984, 25, 5571; c) C. J. Elsevier,
P. J. Vermeer, J. Org. Chem. 1985, 50, 3042; d) T.
Moriya, N. Miyaura, A. Suzuki, Synlett 1994, 149;
e) P. H. Dixneuf, T. Guyot, M. D. Ness, S. M. Roberts,
Chem. Commun. 1997, 2083; f) Y. Wang, W. Zhang, S.
Ma, J. Am. Chem. Soc. 2013, 135, 11517.
[9] In mechanistically aligned chemistry, stereospecific ad-
dition of Pd into propargyl electrophiles, followed by
subsequent transmetallation to In, Bi, Sn, Zn, and Yb
forms new chiral metal-allenyl species. These nucleo-
philes can undergo stereospecific SN2’ additions to car-
bonyl compounds to give enantiomerically enriched
propargyl alcohols, see: a) J. A. Marshall, C. M. Grant,
J. Org. Chem. 1999, 64, 8214; b) J. M. Aurreocoechea,
M. Arrare, B. Lꢁpez, Synlett 2001, 872; c) M. Arrate,
A. Durana, P. Lorenzo, ꢂ. R. de Lera, R. ꢂlvarez,
J. M. Aurrecoechea, Chem. Eur. J. DOI:10.1002/
chem.201301170.
Acknowledgements
We thank Dr. Fredrik Haeffner for helpful discussions. MJA
is grateful for American Chemical Society (DOC) and Astra-
Zeneca Fellowships. This work was supported by a grant
from the US National Institutes of Health (NIGMS 64451).
References
[1] For a general review on catalytic propargylic substitu-
tions, see: R. J. Detz, H. Heimstra, J. H. van Maar-
seveen, Eur. J. Org. Chem. 2009, 6263.
[2] For reviews on Pd-catalyzed reactions of propargylic
systems see: a) J. Tsuji, T. Mandai, Angew. Chem. 1995,
107, 2830; Angew. Chem. Int. Ed. Engl. 1995, 34, 2589;
b) S. Ma, A. Zhang, Pure Appl. Chem. 2001, 73, 337;
c) S. Ma, Eur. J. Org. Chem. 2004, 1175; d) L.-N. Guo,
X.-H. Duan, Y.-M. Liang, Acc. Chem. Res. 2011, 44,
111.
[10] a) A. Horvꢃth, J. Bꢄckvall, Chem. Commun. 2004, 964;
b) H. E. Burks, S. Liu, J. P. Morken, J. Am. Chem. Soc.
2007, 129, 8766.
[11] M. J. Ardolino, J. P. Morken, J. Am. Chem. Soc. 2012,
134, 8770.
[3] For a review on Pd-catalyzed cross-couplings of these
systems, see: a) K. Tsutsumi, S. Ogoshi, K. Kakiuchi, S.
Nishiguchi, H. Kurosawa, Inorg. Chim. Act. 1999, 296,
37; for some recent examples, see: b) S. Condon-Guge-
not, G. Linstrumelle, Tetrahedron 2000, 56, 1851; c) T.
Konno, M. Tanikawa, T. Ishihara, H. Yamanaka, Chem.
Lett. 2000, 1360; d) G. A. Molander, E. M. Sommers,
S. R. Baker, J. Org. Chem. 2006, 71, 1563; e) M. Yoshi-
da, M. Higuchi, K. Shishido, Tetrahedron 2010, 66,
2765; f) J. Ye, S. Li, S. Ma, Org. Lett. 2012, 14, 2312.
[4] For some recent examples of Pd-catalyzed carbon-het-
eroatom bond formations in propargyl substitutions,
see: a) Y. Tsuji, M. Taniguchi, T. Yasuda, T. Kawamura,
Y. Obora, Org. Lett. 2000, 2, 2635; b) N. Nishioka, T.
Koizumi, Tetrahedron Lett. 2011, 52, 3662; c) M. Kalek,
J. Stawinski, Adv. Synth. Catal. 2011, 353; d) Z.-S.
Chen, X.-H. Duan, L.-Y. Wu, S. Ali, K.-G. Ji, P.-X.
Zhou, X.-Y. Liu, Y.-M. Liang, Chem. Eur. J. 2011, 17,
6918.
[5] a) C. J. Elsevier, P. M. Stehouwer, H. Westmijze, P. J.
Vermeer, J. Org. Chem. 1983, 48, 1103; b) J. A. Mar-
shall, M. A. Wolf, J. Org. Chem. 1996, 61, 3238; c) M.
Yoshida, T. Gotou, M. Ihara, Tetrahedron Lett. 2004,
45, 5573; d) M. Yoshida, H. Ueda, M. Ihara, Tetrahe-
dron Lett. 2005, 46, 6705.
[6] For reviews on transition-metal catalyzed substitutions
of allylic systems, see: a) B. M. Trost, D. L. Van Vrank-
en, Chem. Rev. 1996, 96, 395; b) Z. Lu, S. Ma, Angew.
Chem. 2008, 120, 264; Angew. Chem. Int. Ed. 2008, 47,
258.
[12] For experimental and computational studies of the 3,3’-
reductive elimination, see: a) M. Mꢅndez, J. M. Cuerva,
E. Gꢁmez-Bengoa, D. J. Cꢃrdenas, A. M. Echavarren,
Chem. Eur. J. 2002, 8, 3620; b) D. J. Cꢃrdenas, A. M.
Echavarren, New J. Chem. 2004, 28, 338; c) M. Perez-
Rodriguez, A. A. C. Braga, A. R. de Lera, F. Maseras,
R. Alvarez, P. Espinet, Organometallics 2010, 29, 4983.
[13] For related allyl-allyl couplings thought to operate
through a 3,3’-reductive elimination, see: a) P. Zhang,
L. A. Brozek, J. P. Morken, J. Am. Chem. Soc. 2010,
132, 10686; b) P. Zhang, H. Le, R. E. Kyne, J. P.
Morken, J. Am. Chem. Soc. 2011, 133, 9716; c) L. A.
Brozek, M. J. Ardolino, J. P. Morken, J. Am. Chem.
Soc. 2011, 133, 16778; d) H. Le, R. E. Kyne, L. A.
Brozek, J. P. Morken, Org. Lett. 2013, 15, 1432.
[14] For some general reviews on kinetic resolutions, see:
a) H. B. Kagan, J. C. Fiaud, Top. Stereochem. 1988, 18,
249; b) E. Vedejas, M. Jure, Angew. Chem. 2005, 117,
4040; Angew. Chem. Int. Ed. 2005, 44, 3974.
[15] For selected examples of Pd-catalyzed resolutions of
non-symmetric allylic systems, see: a) Y. K. Choi, J. H.
Suh, D. Lee, I. T. Lim, J. Y. Jung, M. J. Kim, J. Org.
Chem. 1999, 64, 8423; b) H. J. Gais, O. Bondarev, R.
Hetzer, Tetrahedron Lett. 2005, 46, 6279; c) B. Mao, Y.
Ji, M. FaÇanꢃs-Mastral, G. Caroli, A. Meetsma, B. Fer-
inga, Angew. Chem. 2012, 124, 3222; Angew. Chem. Int.
Ed. 2012, 51, 3168.
[16] For non-enzymatic kinetic resolutions of propargyl al-
cohols, see: a) B. Tao, J. C. Ruble, D. A. Hoic, G. C. Fu,
J. Am. Chem. Soc. 1999, 121, 5091–5092; b) K. Tanaka,
T. Shoji, Org. Lett. 2005, 7, 3561; c) V. B. Birman, L.
Guo, Org. Lett. 2006, 8, 4859; d) X. Li, H. Jiang, E. W.
Uffman, L. Guo, Y. Zhang, X. Yang, V. B. Birman, J.
Org. Chem. 2012, 77, 1722.
[7] a) C. J. Elsevier, H. Kleijn, J. Boersma, P. Vermeer, Or-
ganometallics 1986, 5, 716; b) S. Ogoshi, K. Tsutsumi,
H. J. Kurosawa, J. Organomet. Chem. 1995, 493, C19;
c) M. W. Baize, P. W. Blosser, V. Plantevin, D. G.
Schimpff, J. C. Gallucci, A. Wokcicki, Organometallics
3418
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2013, 355, 3413 – 3419