8714
B. Kaboudin / Tetrahedron Letters 43 (2002) 8713–8714
products 2 in excellent yields. The reactions were clean
with no tar formation. Ammonium formate
(NH4O2CH) is not as effective as ammonium acetate
and gave low yields of required product. Other ammo-
nium salts (NH4Cl, NH4Br, NH4PF6) are not effective
and didn’t give any product.
Crooke, S. T.; Bennett, C. F. Annu. Rev. Pharmacol.
Toxicol. 1996, 36, 107.
6. Elzagheid, M. I.; Mattila, K.; Oivanen, M.; Jones, B. C.
N. M.; Cosstick, R.; Lonnberg, H. Eur. J. Org. Chem.
2000, 1987.
7. Yoshido, M; Maeda, T.; Sugiyama, H. Japanese Patent
1541 (C1.16 C 92), 1967; Chem. Abstr. 1967, 66, 115455.
8. (a) Folkin, A.V.; Kolomiets, A. F.; Iznoskova, M. G. Izv.
Akad. Nauk. SSSR, Ser. Khim. 1974, 2837; Chem. Abstr.
1975, 82, 97323; (b) Schrader, G. U.S. Patent 2 597 534;
Chem. Abstr. 1953, 47, 4357h.
This solvent-free reaction method is operationally sim-
ple. 10 mmol of the reagent was prepared by the
combination of ammonium acetate (10 mmol, finely
ground), sulfur (10 mmol) and alumina (Al2O3, acidic,
2.5 g) in a mortar and pestle by grinding them together
until a fine, homogeneous, powder was obtained (5–10
min). Diethyl phosphite (10 mmol) was added to this
mixture and the mixture was irradiated by microwave
for 1 min using 720 W. The alkyl halide (9 mmol) was
added to this reagent (solid alkyl halides need to be
grinded) and was irradiated by microwave for 2-5 min
using 720 W (A kitchen-type microwave was used in all
experiments). Chromatography through a plug of silica
gel with EtOAc/n-hexane (1:9–5:5) and evaporation of
the solvent under reduced pressure gave the pure prod-
ucts as oils in 75–90% yields.19
9. Michalski, J.; Modro, T.; Wieczorkowski, J. J. Chem.
Soc. 1960, 1665.
10. (a) Michalski, J.; Wasiak, J. J. Chem. Soc. 1962, 5056; (b)
Michalski, J.; Wieczorkowski, J.; Wasiak, J.; Pliszka, B.
Rocz. Chem. 1959, 33, 247 Chem. Abstr. 1959, 53, 17884;
(c) Harvey, R. G.; Jacobson, H. I.; Jensen, E. V. J. Am.
Chem. Soc. 1963, 85, 1618.
11. (a) Sato, Z.; Takagi, K.; Imamiya, Y.; Shimizu, F.;
Kusano, S. Ger. Offen. 2 601 532 (C1. CO7F9/17), 1976;
Chem. Abstr. 1976, 85, 123628; (b) Hashimoto, T.;
Ohkubo, T. Japanese Patent 77 10 868 (C1. CO7F9/06);
Chem. Abst. 1977, 87, 134503; (c) Schrader, G.; Lorenz,
W. U.S. Patent 2 862 017, 1958; Chem. Abstr. 1960, 54,
1438a; (d) Farbenfabriken Bayer Akt.-Ges. British Patent
814332, 1959; Chem. Abstr. 1960, 54, 17330c; (e) Kabach-
nik, M. I.; Mastrykova, T. A. Zh. Obshch. Khim. 1955,
25, 1924; Chem. Abstr. 1956, 50, 8499d.
In summary, a simple work-up, low consumption of
solvent, fast reaction rates, mild reaction condition,
good yields, relatively clean with no tar formation the
reaction make this method an attractive and a useful
contribution to present methodologies. Indeed, a wide
range of alkyl halides was converted to corresponding
thiophosphates using this method.
12. (a) Schrader, G.; Lorens, W. German Patent 817 057 (C1.
45l, 3ol), 1951; Chem. Abstr. 1954, 48, 6643d; (b) Sall-
mann, R. Swiss Patent 324980, 1957; Chem. Abstr. 1958,
52, 14960a.
13. (a) Fadel, A.; Yefash, R.; Saluan, J. Synthesis 1987, 37;
(b) Rosini, G.; Galarini, R.; Marotta, E.; Righi, R. J.
Org. Chem. 1990, 55, 781; (c) Kodomari, M.; Sakamoto,
T.; Yoshitomi, S. J. Chem. Soc. Chem. Commun. 1990,
701; (d) Kropp, P. J.; Daus, K. A.; Crawford, S. D.;
Tubergren, M. W.; Kepler, K. D.; Craig, S. L.; Wilson,
V. P. J. Am. Chem. Soc. 1990, 112, 7433; (e) Hondrogian-
nis, G.; Pagni, R. M.; Kabalka, G. W.; Anisoki, P.; Kurt,
R. Tetrahedron Lett. 1990, 31, 5433; (f) Pantney, H. K.
Tetrahadron Lett. 1991, 32, 2259; (g) Pauter, F.; Daudon,
M. Tetrahedron Lett. 1991, 32, 1457.
Acknowledgements
The Institute for Advanced Studies in Basic Sciences
(IASBS) is thanked for supporting this work.
References
1. Engel, R. Chem Rev. 1977, 77, 349.
14. Caddick, S. Tetrahedron 1995, 55 (38), 10403–104032.
15. Sardarian, A. R.; Kaboudin, B. Synth. Commun. 1997, 27
(4), 543.
2. (a) Deloude, L.; Laszlo, P. J. Org. Chem. 1996, 61, 6360;
(b) Varma, R. S.; Meshram, H. M. Tetrahedron Lett.
1997, 38, 7973.
16. Sardarian, A. R.; Kaboudin, B. Tetrahedron Lett. 1997,
38, 2543.
17. Kaboudin, B. Tetrahedron Lett. 2000, 41, 3169.
18. Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42,
8211.
3. (a) Smyth, M. S.; Ford, H., Jr.; Burke, T. R. Tetrahedron
Lett. 1992, 33, 4137; (b) Burke, T. R.; Smyth, M. S.;
Nomizu, M.; Otaka, A.; Roller, P. P. J. Org. Chem. 1993,
58, 1336; (c) Burke, T. R.; Smyth, M. S.; Otaka, A.;
Roller, P. P. Tetrahedron Lett. 1993, 34, 4125; (d) Smyth,
M. S.; Burke, T. R. Tetrahedron Lett. 1994, 35, 551; (e)
Benayound, F.; Hammond, G. B. Chem. Commun. 1996,
1447.
4. Fest, C.; Schmidt, K.-J. The Chemistry of Organophos-
phorus Pesticides; Springer-Verlag: Berlin Heidelberg
New York, 1982.
5. (a) Uhlman, E.; Peyman, A. Chem. Rev. 1990, 90, 543; (b)
Stein, C. A.; Cheng, Y. C. Science 1993, 261, 1004; (c)
19. All products gave satisfactory spectral data in accord
with the assigned structures. For 2a (S-benzyl O,O-
diethyl phosphorothioate) as an example 1H NMR
(CDCl3/TMS-500 MHz): 1.31 (6H, t, J=7.1 Hz), 4.01–
4.25 (6H, m), 7.27–7.29 (5H, m); 31P NMR (CDCl3/
H3PO4-85%): 27.05 ppm; 13C NMR: 16.39, 35.4, 63.9,
128.0, 129.1, 137.9; IR (neat): 1260 (PꢀO), 1162(PꢁOꢁEt)
cm−1
.