10.1002/anie.201901501
Angewandte Chemie International Edition
COMMUNICATION
2017, 139, 87-90; l) D. H. Paull, M. T. Scerba, E. Alden-Danforth, L. R.
Widger, T. Lectka, J. Am. Chem. Soc. 2008, 130, 17085-17094.
[8] S. E. Denmark, G. L. Beutner, Angew. Chem., Int. Ed. 2008, 47, 1560-1638;
Angew. Chem. 2008, 120, 1584-1663.
notable 1+1 > 2 synergistic effect (Figure S5 in Supporting
Information). An alternative pathway to generate VI from
acylpalladium III is also possible: the nucleophilic Lewis base
coordinates to acylpalladium III to give an intermediate VII, which
undergoes reductive elimination and generates an ammonium
salt VIII (path b).[15e] In the presence of a base, the salt could
transform into ammonium enolate VI. Once formed, the
intermediate VI could undergo stereoselective Michael addition
with ketimine 2a via a proposed transition state TS-1[23], followed
by intramolecular cyclization, to generate the corresponding
dihydropyridone 3a[14a, 20]. For the formal [1+1+2] reaction, the
intermediate VI and imine 5 could undergo a similar cascade
Mannich-type reaction/intramolecular cyclization process to give
β-lactam 6.[16f, 20]
[9] a) L. C. Morrill, A. D. Smith, Chem. Soc. Rev. 2014, 43, 6214-6226; b) A.
Smith, J. Douglas, G. Churchill, Synthesis 2012, 44, 2295-2309; c) M. J.
Gaunt, C. C. C. Johansson, Chem. Rev. 2007, 107, 5596-5605; d) T. Lectka,
S. France, D. J. Guerin, S. J. Miller, Chem. Rev. 2003, 103, 2985-3012.
[10] a) T. Lectka, D. H. Paull, A. Weatherwax, Tetrahedron 2009, 65, 6771-
6803; b) J. C. Sauer, J. Am. Chem. Soc. 1947, 69, 2444-2448.
[11] H. Wynberg, E. G. J. Staring, J. Am. Chem. Soc. 1982, 104, 166-168.
[12] A. D. Allen, T. T. Tidwell, Eur. J. Org. Chem. 2012, 2012, 1081-1096.
[13] a) C. A. Leverett, V. C. Purohit, D. Romo, Angew. Chem., Int. Ed. 2010, 49,
9479-9483; Angew. Chem. 2010, 122, 9669-9673; b) D. Belmessieri, L. C.
Morrill, C. Simal, A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc. 2011,
133, 2714-2720.
To conclude, the present finding demonstrates that benzyl
bromides and CO could be applied as simple and inexpensive
starting materials for the catalytic generation of C1-ammonium
enolates by integrating the palladium-catalyzed carbonylation and
chiral Lewis base catalysis. This strategy has allowed for the
asymmetric formal [1+1+4] and [1+1+2] annulation reactions of
benzyl bromides, CO and N-tosylimines to give chiral
dihydropyridones and β-lactams.
[14] a) L. C. Morrill, T. Lebl, A. M. Z. Slawin, A. D. Smith, Chem. Sci. 2012, 3,
2088-2093; b) C. Simal, T. Lebl, A. M. Z. Slawin, A. D. Smith, Angew.
Chem., Int. Ed. 2012, 51, 3653-3657; Angew. Chem. 2012, 124, 3713-
3717; c) H. M. Zhang, Z. H. Gao, S. Ye, Org. Lett. 2014, 16, 3079-3081; d)
Y. Chi, L. Hao, C. Chuen, R. Ganguly, Synlett 2013, 24, 1197-1200; e) L.
C. Morrill, J. Douglas, T. Lebl, A. M. Z. Slawin, D. J. Fox, A. D. Smith, Chem.
Sci. 2013, 4, 4146-4155; f) D. G. Stark, L. C. Morrill, P.-P. Yeh, A. M. Z.
Slawin, T. J. C. O. Riordan, A. D. Smith, Angew. Chem., Int. Ed. 2013, 52,
11642-11646; Angew. Chem. 2013, 125, 11856-11860; g) X. Y. Chen, Z.
H. Gao, C. Y. Song, C. L. Zhang, Z. X. Wang, S. Ye, Angew. Chem., Int.
Ed. 2014, 53, 11611-11615; Angew. Chem. 2014, 126, 11795-11799; h) Y.
Fukata, K. Asano, S. Matsubara, J. Am. Chem. Soc. 2015, 137, 5320-5323;
i) S. Wang, J. Izquierdo, C. Rodriguez-Escrich, M. A. Pericas, ACS Catal.
2017, 7, 2780-2785.
Acknowledgements
We are grateful for the financial support from NSFC (Grants
21831007, 21772184), 973 Program (No. 2015CB856602) and
Chinese Academy of Science (Grant No. XDB20000000).
[15] a) R. V. H. Jones, W. E. Lindsell, D. D. Palmer, P. N. Preston, A. J. Whitton,
Tetrahedron Lett. 2005, 46, 8695-8697; b) X. F. Wu, H. Neumann, M. Beller,
Chem. Rev. 2013, 113, 1-35; c) J. S. Quesnel, B. A. Arndtsen, J. Am. Chem.
Soc. 2013, 135, 16841-16844; d) J.-B. Peng, H.-Q. Geng, X.-F. Wu, Chem
2018, 5, 526–552; e) P. L. Lagueux-Tremblay, A. Fabrikant, B. A. Arndtsen,
ACS Catal. 2018, 8, 5350-5354; f) R. G. Kinney, J. Tjutrins, G. M. Torres,
N. J. B. Liu, O. Kulkarni, B. A. Arndtsen, Nature Chem. 2018, 10, 193-199.
[16] a) H. Okumoto, in Handbook of Organopalladium Chemistry for Organic
Synthesis (Ed.: E. Negishi), John Wiley & Sons, Inc., 2003, pp 2655; b) S.
Torii, H. Okumoto, M. Sadakane, A. K. M. A. Hai, H. Tanaka, Tetrahedron
Lett. 1993, 34, 6553-6556; c) H. Tanaka, A. K. M. A. Hai, M. Sadakane, H.
Okumoto, S. Torii, J. Org. Chem. 1994, 59, 3040-3046; d) L. Troisi, L. De
Vitis, C. Granito, E. Epifani, Eur. J. Org. Chem. 2004, 2004, 1357-1362; e)
Z. Zhang, Y. Liu, L. Ling, Y. Li, Y. Dong, M. Gong, X. Zhao, Y. Zhang, J.
Wang, J. Am. Chem. Soc. 2011, 133, 4330-4341; f) P. Xie, B. Qian, H. M.
Huang, C. G. Xia, Tetrahedron Lett. 2012, 53, 1613-1616; g) G. M. Torres,
M. De La Higuera Macias, J. S. Quesnel, O. P. Williams, V. Yempally, A. A.
Bengali, B. A. Arndtsen, J. Org. Chem. 2016, 81, 12106-12115; h) M.
Capua, S. Perrone, F. Bona, A. Salomone, L. Troisi, Eur. J. Org. Chem.
2017, 2017, 1780-1787.
Keywords: asymmetric relay catalysis • carbonylation • C1-
ammonium enolate
[1] a) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem., Int. Ed. 2006,
45, 7134-7186; Angew. Chem. 2006, 118, 7292-7344. b) P.-F. Xu, W. Wang,
Catalytic Cascade Reactions, Wiley: Hoboken, NJ, 2014.
[2] T. L. Lohr, T. J. Marks, Nature Chem. 2015, 7, 477-482.
[3] a) Y. Wang, H. Lu, P. F. Xu, Acc. Chem. Res. 2015, 48, 1832-1844; b) C.
Grondal, M. Jeanty, D. Enders, Nature Chem. 2010, 2, 167; c) D. W. C.
MacMillan, Nature 2008, 455, 304-308; d) B. List, Chem. Rev. 2007, 107,
5413-5415.
[4] D. Enders, M. R. M. Huttl, C. Grondal, G. Raabe, Nature 2006, 441, 861-863.
[5] Q. L. Zhou, Angew. Chem., Int. Ed. 2016, 55, 5352-5353; Angew. Chem.
2016, 128, 5438-5439.
[6] J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in Organic
Synthesis, John Wiley & Sons, Ltd, West Sussex, 2003.
[17] V. B. Birman, H. Jiang, X. Li, L. Guo, E. W. Uffman, J. Am. Chem. Soc.
2006, 128, 6536-6537.
[7] a) D. F. Chen, Z. Y. Han, X. L. Zhou, L. Z. Gong, Acc. Chem. Res. 2014, 47,
2365-2377; b) Z. Du, Z. Shao, Chem. Soc. Rev. 2013, 42, 1337-1378; c) S.
Afewerki, A. Cordova, Chem. Rev. 2016, 116, 13512-13570; d) P. Eilbracht,
L. Bärfacker, C. Buss, C. Hollmann, B. E. Kitsos-Rzychon, C. L. Kranemann,
T. Rische, R. Roggenbuck, A. Schmidt, Chem. Rev. 1999, 99, 3329-3366;
e) Z. Y. Han, L. Z. Gong, Progress in Chemistry 2018, 30, 505-512; f) J.
Meng, L.-F. Fan, Z.-Y. Han, L.-Z. Gong, Chem 2018, 4, 1047-1058; g) K. J.
Schwarz, J. L. Amos, J. C. Klein, D. T. Do, T. N. Snaddon, J. Am. Chem.
Soc. 2016, 138, 5214-5217; h) S. S. M. Spoehrle, T. H. West, J. E. Taylor,
A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc. 2017, 139, 11895-11902; i)
K. J. Schwarz, C. M. Pearson, G. A. Cintron-Rosado, P. Liu, T. N. Snaddon,
Angew. Chem., Int. Ed. 2018, 57, 7800-7803; Angew. Chem. 2018,
130,7926-7929; j) K. J. Schwarz, C. Yang, J. W. B. Fyfe, T. N. Snaddon,
Angew. Chem., Int. Ed. 2018, 57, 12102-12105; Angew. Chem. 2018, 130,
12278-12281; k) X. Jiang, J. J. Beiger, J. F. Hartwig, J. Am. Chem. Soc.
[18] I. Shiina, K. Nakata, K. Ono, Y. Onda, M. Itagaki, J. Am. Chem. Soc. 2010,
132, 11629–11641.
[19] S. A. Sieber, T. Böttcher, I. Staub, R. Orth, in Comprehensive Natural
Products II (Eds.: H.-W. Liu, L. Mander), Elsevier, Oxford, 2010, pp. 629-
674.
[20] S. R. Smith, J. Douglas, H. Prevet, P. Shapland, A. M. Z. Slawin, A. D.
Smith, J. Org. Chem. 2014, 79, 1626-1639.
[21] P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649.
[22] N. M. O’Boyle, M. Carr, L. M. Greene, N. O. Keely, A. J. S. Knox, T. McCabe,
D. G. Lloyd, D. M. Zisterer, M. J. Meegan, Eur. J. Med. Chem. 2011, 46,
4595-4607.
[23] Q. Q. Shi,a W. Zhang, Y. Wang, L. B. Qu, D. H. Wei, Org. Biomol. Chem.,
2018, 16, 2301–2311.
This article is protected by copyright. All rights reserved.