Journal of the American Chemical Society
Communication
(16) Sambhy, V.; Peterson, B. R.; Sen, A. Angew. Chem. Int. Ed. 2008,
47, 1250.
(17) Choi, S.; Isaacs, A.; Clements, D.; Liu, D.; Kim, H.; Scott, R. W.;
Winkler, J. D.; DeGrado, W. F. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
6968.
(18) Tang, H.; Doerksen, R.; Jones, T.; Klein, M.; Tew, G. Chem.
Biol. 2006, 13, 427.
(19) Tew, G. N.; Clements, D.; Tang, H.; Arnt, L.; Scott, R. W.
Biochim. Biophys. Acta 2006, 1758, 1387.
(20) Fjell, C. D.; Hiss, J. A.; Hancock, R. E. W.; Schneider, G. Nat.
Rev. Drug Discovery 2012, 11, 37.
(21) Finlay, B. B.; Hancock, R. E. Nat. Rev. Microbiol. 2004, 2, 497.
(22) Nicholls, E. F.; Madera, L.; Hancock, R. E. Ann. N.Y. Acad. Sci.
2010, 1213, 46.
(23) Thaker, H. D.; Sgolastra, F.; Clements, D.; Scott, R. W.; Tew, G.
N. J. Med. Chem. 2011, 54, 2241.
(24) White, S. H.; Wimley, W. C. Annu. Rev. Biophys. Biomol. Struct.
1999, 28, 319.
(25) Al-Badri, Z. M.; Som, A.; Lyon, S.; Nelson, C. F.; Nusslein, K.;
The new series of aryl-based SMAMPs described here, which
were designed via systematic tuning of hydrophobicity and
cationic charge, exhibited potent antibacterial activities relative
to MSI-78 while being nontoxic to host cells. Additionally,
SMAMP 4 exhibited unique immunomodulatory properties.
The dual-functional role of SMAMPs with direct antimicrobial
activity and immunomodulatory response is very encouraging
since immunomodulatory compounds have gained importance
in recent years in anti-infective therapy, cancer therapy, and
vaccine development. These SMAMPs were originally designed
to execute antimicrobial activity, but their ability to boost the
innate immune response represents a promising approach to
prevent or treat infectious diseases.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, HPLC data, broad-spectrum antimicrobial
activity, and additional figures. This material is available free of
Tew, G. N. Biomacromolecules 2008, 9, 2805.
(26) Chaly, Y. V.; Paleolog, E. M.; Kolesnikova, T. S.; Tikhonov, I. I.;
Petratchenko, E. V.; Voitenok, N. N. Eur. Cytokine Network 2000, 11,
257.
(27) Gough, M.; Hancock, R. E.; Kelly, N. M. Infect. Immun. 1996,
64, 4922.
(28) Lipford, G. B.; Sparwasser, T.; Bauer, M.; Zimmermann, S.;
Koch, E. S.; Heeg, K.; Wagner, H. Eur. J. Immunol. 1997, 27, 3420.
(29) Shimojoh, M.; Kojima, T.; Nakajima, K.; Hatta, K.; Katoh, A.;
Kurita, K. Biomacromolecules 2010, 11, 1212.
(30) Henricson, B. E.; Manthey, C. L.; Perera, P. Y.; Hamilton, T. A.;
Vogel, S. N. Infect. Immun. 1993, 61, 2325.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
∥H.D.T. and A.S. contributed equally.
Notes
The authors declare no competing financial interest.
(31) Scott, M. G.; Dullaghan, E.; Mookherjee, N.; Glavas, N.;
Waldbrook, M.; Thompson, A.; Wang, A.; Lee, K.; Doria, S.; Hamill,
P.; Yu, J. J.; Li, Y.; Donini, O.; Guarna, M. M.; Finlay, B. B.; North, J.
R.; Hancock, R. E. Nat. Biotechnol. 2007, 25, 465.
(32) Mookherjee, N.; Hamill, P.; Gardy, J.; Blimkie, D.; Falsafi, R.;
Chikatamarla, A.; Arenillas, D. J.; Doria, S.; Kollmann, T. R.; Hancock,
R. E. Mol. BioSyst. 2009, 5, 483.
(33) Rosenfeld, Y.; Papo, N.; Shai, Y. J. Biol. Chem. 2006, 281, 1636.
(34) Dagvadorj, J.; Naiki, Y.; Tumurkhuu, G.; Hassan, F.; Islam, S.;
Koide, N.; Mori, I.; Yoshida, T.; Yokochi, T. Innate Immun. 2008, 14,
109.
(35) Clarke, C. J. P.; Hales, A.; Hunt, A.; Foxwell, B. M. J. Eur. J.
Immunol. 1998, 28, 1719.
(36) Lira, S. A.; Zalamea, P.; Heinrich, J. N.; Fuentes, M. E.;
Carrasco, D.; Lewin, A. C.; Barton, D. S.; Durham, S.; Bravo, R. J. Exp.
Med. 1994, 180, 2039.
ACKNOWLEDGMENTS
■
This work was supported by NIH (AI-074866 and U01 AI-
082192). The authors acknowledge Ms. Melissa Lackey and Dr.
Federica Sgolastra for their invaluable comments on the early
drafts. Mass spectral data were obtained at the University of
Massachusetts Mass Spectrometry Facility, which is supported
in part by NSF.
REFERENCES
(1) Taubes, G. Science 2008, 321, 356.
(2) Zasloff, M. Nature 2002, 415, 389.
■
(3) Hancock, R. E. W.; Sahl, H.-G. Nat. Biotechnol. 2006, 24, 1551.
(4) Park, Y.; Lee, D. G.; Jang, S. H.; Woo, E. R.; Jeong, H. G.; Choi,
C. H.; Hahm, K. S. Biochim. Biophys. Acta 2003, 1645, 172.
(5) Porter, E. A.; Wang, X.; Lee, H. S.; Weisblum, B.; Gellman, S. H.
Nature 2000, 404, 565.
(6) Liu, D.; DeGrado, W. F. J. Am. Chem. Soc. 2001, 123, 7553.
(7) Chongsiriwatana, N. P.; Patch, J. A.; Czyzewski, A. M.; Dohm, M.
T.; Ivankin, A.; Gidalevitz, D.; Zuckermann, R. N.; Barron, A. E. Proc.
Natl. Acad. Sci. U.S.A. 2008, 105, 2794.
(37) Nijnik, A.; Madera, L.; Ma, S. H.; Waldbrook, M.; Elliott, M. R.;
Easton, D. M.; Mayer, M. L.; Mullaly, S. C.; Kindrachuk, J.; Jenssen,
H.; Hancock, R. E. W. J. Immunol. 2010, 184, 2539.
(8) Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.; Epand,
R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. J. Am. Chem. Soc.
2007, 129, 15474.
(9) Tew, G. N.; Liu, D.; Chen, B.; Doerksen, R. J.; Kaplan, J.; Carroll,
P. J.; Klein, M. L.; DeGrado, W. F. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 5110.
(10) Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.;
Nusslein, K.; Tew, G. N. J. Am. Chem. Soc. 2008, 130, 9836.
(11) Kuroda, K.; DeGrado, W. F. J. Am. Chem. Soc. 2005, 127, 4128.
(12) Arnt, L.; Nusslein, K.; Tew, G. N. Polym. Sci., Part A: Polym.
Chem. 2004, 42, 3860.
(13) Ilker, M. F.; Nusslein, K.; Tew, G. N.; Coughlin, E. B. J. Am.
Chem. Soc. 2004, 126, 15870.
(14) Gabriel, G. J.; Madkour, A. E.; Dabkowski, J. M.; Nelson, C. F.;
Nusslein, K.; Tew, G. N. Biomacromolecules 2008, 9, 2980.
(15) Arnt, .; I, L.; Tew, G. N. J. Am. Chem. Soc. 2002, 124, 7664a.
D
dx.doi.org/10.1021/ja303304j | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX