ACS Medicinal Chemistry Letters
Letter
htm (accessed February 1, 2013).
administered in the presence of mouse serum and exhibited
higher antimicrobial activity toward S. aureus over E. coli.
SMAMPs 5, 7, and 10 possessed comparable antimicrobial
activities toward S. aureus as the most potent SMAMPs
reported in the literature while maintaining lower hemolytic
activity. The importance of the linker was also investigated by
comparing 7 to 17−18, and a pronounced difference in
antimicrobial and hemolytic activities was observed, thus
validating the use of the 1,2,3-triazole moiety. As a result of
this study, we have identified three SMAMPs, 5, 7, and 10, that
outperformed pexiganan, and they are currently being
investigated for use as new antibiotics.
(11) Brahmachary, M.; Krishnan, S. P. T.; Koh, J. L. Y.; Khan, A. M.;
Seah, S. H.; Tan, T. W.; Brusic, V.; Bajic, V. B. ANTIMIC: a database
of antimicrobial sequences. Nucleic Acids Res. 2004, 32, D586−D589.
(12) Brogden, N. K.; Brogden, K. A. Will new generations of
modified antimicrobial peptides improve their potential as pharma-
ceuticals? Int. J. Antimicrob. Agents 2011, 38, 217−225.
(13) Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial
peptides: key components of the innate immune system. Crit. Rev.
Biotechnol. 2012, 32, 143−171.
(14) Chongsiriwatana, N. P.; Patch, J. A.; Czyzewski, A. M.; Dohm,
M. T.; Ivankin, A.; Gidalevitz, D.; Zuckermann, R. N.; Barron, A. E.
Peptoids that mimic the structure, function, and mechanism of helical
antimicrobial peptides. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2794−
2799.
(15) Liu, D.; DeGrado, W. F. De Novo Design, Synthesis, and
Characterization of Antimicrobial Peptides. J. Am. Chem. Soc. 2001,
123, 7553−7559.
(16) Porter, E. A.; Weisblum, B.; Gellman, S. H. Mimicry of Host-
Defense Peptides by Unnatural Oligomers: Antimicrobial β-Peptides.
J. Am. Chem. Soc. 2002, 124, 7324−7330.
(17) Porter, E. A.; Wang, X.; Lee, H.-S.; Weisblum, B.; Gellman, S. H.
Antibiotics: Non-haemolytic [beta]-amino-acid oligomers. Nature
2000, 404, 565−565.
ASSOCIATED CONTENT
* Supporting Information
■
S
Procedure for the synthesis of 7, characterization data for 4−
11, and procedures for determining antimicrobial and
hemolytic activity. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
(18) Haug, B. E.; Stensen, W.; Kalaaji, M.; Rekdal, Y.; Svendsen, J. S.
Synthetic Antimicrobial Peptidomimetics with Therapeutic Potential.
J. Med. Chem. 2008, 51, 4306−4314.
(19) Makovitzki, A.; Avrahami, D.; Shai, Y. Ultrashort antibacterial
and antifungal lipopeptides. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
15997−16002.
Author Contributions
T-h.F. and Y.L. contributed equally.
Notes
The authors declare no competing financial interest.
(20) Dartois, V.; Sanchez-Quesada, J.; Cabezas, E.; Chi, E.;
Dubbelde, C.; Dunn, C.; Granja, J.; Gritzen, C.; Weinberger, D.;
Ghadiri, M. R.; Parr, T. R. Systemic Antibacterial Activity of Novel
Synthetic Cyclic Peptides. Antimicrob. Agents Chemother. 2005, 49,
3302−3310.
(21) Tew, G. N.; Liu, D.; Chen, B.; Doerksen, R. J.; Kaplan, J.;
Carroll, P. J.; Klein, M. L.; DeGrado, W. F. De novo design of
biomimetic antimicrobial polymers. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 5110−5114.
ACKNOWLEDGMENTS
■
This work was supported by the NIH (AI-074866 and U01 AI-
082192). Mr. Michael Lis and Ms. Katie Gibney are
acknowledged for helpful and challenging discussions. Mass
spectral data were obtained at the University of Massachusetts
Mass Spectrometry Facility which is supported, in part, by the
National Science Foundation.
(22) Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.;
Epand, R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. Mimicry of
Antimicrobial Host-Defense Peptides by Random Copolymers. J. Am.
Chem. Soc. 2007, 129, 15474−15476.
REFERENCES
■
(1) Capita, R.; Alonso-Calleja, C. Antibiotic-Resistant Bacteria: A
Challenge for the Food Industry. Crit. Rev. Food Sci. Nutr. 2013, 53,
11−48.
(23) Arnt, L.; Nusslein, K.; Tew, G. N. Nonhemolytic abiogenic
̈
polymers as antimicrobial peptide mimics. J. Polym. Sci., Part A: Polym.
Chem 2004, 42, 3860−3864.
(24) Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.;
(2) Wright, G. D. Antibiotics: A New Hope. Chem. Biol. 2012, 19, 3−
10.
(3) Hadley, E. B.; Hancock, R. E. Strategies for the Discovery and
Advancement of Novel Cationic Antimicrobial Peptides. Curr. Top.
Med. Chem. 2010, 10, 1872−1881.
(4) Baumann, G.; Mueller, P. A molecular model of membrane
excitability. J. Supramol. Struct. 1974, 2, 538−557.
Nusslein, K.; Tew, G. N. Antimicrobial Polymers Prepared by ROMP
̈
with Unprecedented Selectivity: A Molecular Construction Kit
Approach. J. Am. Chem. Soc. 2008, 130, 9836−9843.
(25) Radzishevsky, I. S.; Kovachi, T.; Porat, Y.; Ziserman, L.;
Zaknoon, F.; Danino, D.; Mor, A. Structure-activity relationships of
antibacterial acyl-lysine oligomers. Chem. Biol. 2008, 15, 354−362.
(26) Zaknoon, F.; Sarig, H.; Rotem, S.; Livne, L.; Ivankin, A.;
Gidalevitz, D.; Mor, A. Antibacterial Properties and Mode of Action of
a Short Acyl-Lysyl Oligomer. Antimicrob. Agents Chemother. 2009, 53,
3422−3429.
(5) Pouny, Y.; Rapaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Interaction
of antimicrobial dermaseptin and its fluorescently labeled analogs with
phospholipid membranes. Biochemistry 1992, 31, 12416−12423.
(6) Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.;
Huang, H. W. Membrane Pores Induced by Magainin. Biochemistry
1996, 35, 13723−13728.
(7) Leontiadou, H.; Mark, A. E.; Marrink, S. J. Antimicrobial Peptides
in Action. J. Am. Chem. Soc. 2006, 128, 12156−12161.
(8) Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the
recent study of antimicrobial peptides: Origins, functions, relative
mechanisms and application. Peptides 2012, 37, 207−215.
(9) Zhu, W.; Zhang, Y.; Sinko, W.; Hensler, M. E.; Olson, J.;
Molohon, K. J.; Lindert, S.; Cao, R.; Li, K.; Wang, K.; Wang, Y.; Liu,
Y.-L.; Sankovsky, A.; de Oliveira, C. A. F.; Mitchell, D. A.; Nizet, V.;
McCammon, J. A.; Oldfield, E. Antibacterial drug leads targeting
isoprenoid biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 123−
128.
(27) Lai, X.-Z.; Feng, Y.; Pollard, J.; Chin, J. N.; Rybak, M. J.; Bucki,
R.; Epand, R. F.; Epand, R. M.; Savage, P. B. Ceragenins: Cholic Acid-
Based Mimics of Antimicrobial Peptides. Acc. Chem. Res. 2008, 41,
1233−1240.
(28) Liu, D.; Choi, S.; Chen, B.; Doerksen, R. J.; Clements, D. J.;
Winkler, J. D.; Klein, M. L.; DeGrado, W. F. Nontoxic Membrane-
Active Antimicrobial Arylamide Oligomers. Angew. Chem., Int. Ed.
2004, 43, 1158−1162.
(29) Tang, H.; Doerksen, R. J.; Tew, G. N. Synthesis of urea
oligomers and their antibacterial activity. Chem. Commun. 2005,
1537−1539.
D
dx.doi.org/10.1021/ml400155a | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX