compounds.2 In addition, enzymatic reductions of â-ketoesters
as well as aldol reactions can also efficiently provide optically
active â-hydroxy esters.3,4 Apart from those methods, biocata-
lytic deracemization5 and optical resolution of racemic â-
hydroxy esters6 also have been frequently employed. Herein
we report a new method to prepare optically active 3-hydroxy-
3-arylpropionic acid methyl or ethyl esters by enantioselective
hydrosilylation of 3-oxo-3-arylpropionic acid methyl or ethyl
esters using NHC-Rh complexes derived from optically active
1,1′-binaphthalenyl-2,2′-diamine (BINAM) and H8-BINAM for
the first time.
The Use of Chiral BINAM NHC-Rh(III)
Complexes in Enantioselective Hydrosilylation of
3-Oxo-3-arylpropionic Acid Methyl or
Ethyl Esters
Qin Xu,† Xingxing Gu,† Sijia Liu,† Qinyu Dou,† and
Min Shi*,†,‡
School of Chemistry & Molecular Engineering, East China
UniVersity of Science and Technology, 130 Meilong Road,
Shanghai 200237, China, and State Key Laboratory of
Organometallic Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 354 Fenglin Road,
Shanghai 200032, China
N-Heterocyclic carbenes (NHC), a flexible ligand, developed
rapidly in the latest decade due to their stability to air and
moisture and their strong σ-donor but poor π-acceptor abilities.7
Great effort has been made to conduct chiral NHC-metal
complexe-catalyzed reactions in an enantioselective way, and
this century has already witnessed remarkable achievements.8
NHC-Rh complexes have been known as effective catalysts for
enantioselective hydrosilylation of ketones to provide optically
active secondary alcohols in moderate to good enantiomeric
excesses under mild conditions.9 Previously, we also reported
the preparation of an axially chiral NHC-Rh(III) complex 1
derived from optically active 1,1-binaphthalenyl-2,2′-diamine
(BINAM) and demonstrated its high chiral induction ability in
ReceiVed NoVember 29, 2006
(2) For recent reviews of asymmetric hydrogenation, see: (a) Tang, W.;
Zhang, X. Chem. ReV. 2003, 103, 3029. (b) McCarthy, M.; Guiry, P. J.
Tetrahedron 2001, 57, 3809. (c) Catalytic Asymmetric Synthesis; Ojima,
I., Ed.; Wiley-VCH: Weinheim, Germany, 2000. (d) ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfalts, A., Yamamoto, H., Eds.;
Springer: Berlin, Germany, 1999.
(3) (a) Davies, H. G.; Green, R. H.; Kelly, D. R.; Roberts, S. M. In
Biotransformations in PreparatiVe Organic Chemistry. The Use of Isolated
Enzymes and Whole Cell Systems in Synthesis; Academic Press: London,
UK, 1989; Chapter 3. (b) Rodriguez, S.; Kayser, M. M.; Stewart, J. D. J.
Am. Chem. Soc. 2001, 123, 1547. (c) Buque, E. M.; Chin-Joe, I.; Straathof,
A. J. J.; Jongejan, J. A.; Heijnen, J. J. Enzyme Microb. Technol. 2002, 31,
656.
(4) (a) Duthaler, R. O.; Herold, P.; Lottenbach, W.; Oertle, K.; Riediker,
M. Angew. Chem., Int. Ed. Engl. 1989, 28, 495. (b) Mioskowski, C.;
Solladie, G. Tetrahedron 1979, 36, 227. (c) Meyers, A. I.; Knaus, G.
Tetrahedron Lett. 1974, 15, 1333.
(5) (a) Azerad, R.; Buisson, D. In Microbial Reagents in Organic
Synthesis; Servi, S., Ed.; Kluwer Academic Publishers: Dordecht, The
Netherlands, 1992; p 421. (b) Nakamura, K.; Fuji, M.; Ida, Y. Tetrahedron:
Asymmetry 2001, 12, 3147. (c) Padhi, S. K.; Chadha, A. Tetrahedron:
Asymmetry 2005, 16, 2790.
Axially chiral BINAM N-heterocyclic carbene (NHC)-Rh-
(III) complexes were applied in the enantioselective hydrosi-
lylation of 3-oxo-3-arylpropionic acid methyl or ethyl esters.
The reduction products 3-hydroxy-3-arylpropionic acid meth-
yl or ethyl esters could be obtained in good yields with good
to excellent enantioselectivities under mild conditions.
(6) (a) Sharma, A.; Chattopadhyay, S. J. Mol. Catal. B: Enzym. 2000,
10, 531. (b) Xu, C.; Yuan, C. Tetrahedron 2005, 61, 2169.
(7) For reviews, see: (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002,
41, 1209. (b) Ce´sar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc.
ReV. 2004, 33, 619.
Enantiopure â-hydroxy esters are important building blocks
for the synthesis of biologically active compounds and natural
products.1 Thus far, medicinal importance has spurred the
research of convenient and highly selective methods for the
synthesis of optically active â-hydroxy esters or their derivatives.
Metal-catalyzed asymmetric hydrogenation of â-ketoesters is
one of the most practical and efficient methods to obtain such
(8) For the asymmetric catalysis using chiral metal-NHC as catalyst to
achieve good to excellent enantioselectivities, see: (a) Seiders, T. J.; Ward,
D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225. (b) Powell, M. T.; Hou, D.
R.; Perry, M. C.; Cui, X. H.; Burgess, K. J. Am. Chem. Soc. 2001, 123,
8878. (c) Perry, M. C.; Cui, X. H.; Powell, M. T.; Hou, D. R.; Reibenspies,
J. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113. (d) Van Veldhuizen,
J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H. J. Am. Chem. Soc.
2002, 124, 4954. (e) Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz, J.;
Roland, S.; Mangeney, P. AdV. Synth. Catal. 2003, 345, 345. (f) Ce´sar, V.;
Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. ReV. 2004, 33, 619. (g)
Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402. (h) Perry, M. C.;
Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951. (i) Van Veldhuizen,
J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J.
Am. Chem. Soc. 2003, 125, 12502. (j) He, M.; Struble, J. R.; Bode, J. W.
J. Am. Chem. Soc. 2006, 128, 8418.
* Address correspondence to this author. Fax: 86-21-64166128.
† East China University of Science and Technology.
‡ Chinese Academy of Sciences.
(1) (a) Mori, K. Tetrahedron 1989, 45, 3233. (b) Girard, A.; Greck, C.;
Ferroud, D.; Genet, J. P. Tetrahedron Lett. 1996, 37, 7967. (c) Ali, I. S.;
Sudalai, A. Tetrahedron Lett. 2002, 43, 5435. (d) Wirth, D. D.; Miller, M.
S.; Boini, S. K.; Koenig, T. M. Org. Process Res. DeV. 2000, 4, 513. (e)
Hodgetts, K. J. Tetrahedron Lett. 2001, 42, 3763.
10.1021/jo062453d CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/21/2007
2240
J. Org. Chem. 2007, 72, 2240-2242