malononitrileꢀenone conjugate addition8 with an oxidative
degradation of the adducts (eq 4, Scheme 1).9 Nonetheless,
the applicability of this approach is significantly diminished
by the acute toxicity of malononitrile (via its metabolism to
CNꢀ in the body).10
been found to participate in various asymmetric conjugate
addition reactions, which further validates the analogous
NSM as a viable pronucleophile.16 To the best of our knowl-
edge, NSM is also user-benign, therefore prevailing over other
highly toxic acyl anion equivalents, such as malononitrile and
HCN. In spite of its vast potential as an acyl precursor, NSM
is disadvantaged by its high cost and limited synthetic
accessibility.12b,16e,17 To overcome this obstacle, our initial
efforts focused on developing a facile preparative approach
toward NSM. By modifying a known procedure,18 NSM can
be obtained on a 40 g scale without advanced purification
techniques (Scheme 2).
Scheme 1. Enantioselective Synthesis of γ-Keto Esters
Scheme 2. Improved Preparation of NSM
With readily accessible NSM in hand, we performed its
thiourea-catalyzed Michael reaction19 under the conditions
employed for that of FNSM (entries 1ꢀ7, Table 1; see
Supporting Information (SI) for details).16a However, the
reaction with NSM was found to be very sluggish (entries 1
and 2, Table 1). This is similar to the observation that
dinitromethane is less reactive than fluorodinitromethane
in the Michael reaction20 owing to R-fluorine effects.21
We thus increased the reaction concentration to 2 M, which
led to remarkable enhancements in reaction yields (entries
Addressing such an inherent synthetic challenge, we
envisaged nitro(phenylsulfonyl)methane (NSM, 1) to be
a versatile acyl anion precursor due to its superior proper-
ties over other active methylene pronucleophiles. First,
among strong carbon acids, NSM (pKa ≈ 7 in DMSO)11
and its R-substituted derivatives can undergo ready depro-
tonation to form the corresponding anions that can serve
as nucleophiles in many transformations.12 Second, the
oxidative degradation of primary nitroalkanes (NO2CH2R)13
and primary sulfones (RSO2CH2R0)14 usually requires harsh
reaction conditions, such as utilization of strong bases and/or
oxidants. In comparison, the oxidative methanolysis of the
nitro(phenylsulfonyl)methyl moiety (NO2CHSO2Ph) can be
achieved under considerably milder conditions.15 In particu-
lar, R-fluoro-R-nitro(phenylsulfonyl)methane (FNSM) has
(16) For enantioselective conjugate addition of FNSM, see: (a) Prakash,
G. K. S.; Wang, F.; Stewart, T.; Mathew, T.; Olah, G. A. Proc. Natl. Acad.
Sci. U.S.A. 2009, 106, 4090–4094. (b) Ullah, F.; Zhao, G.-L.; Deiana, L.;
ꢀ
Zhu, M.; Dziedzic, P.; Ibrahem, I.; Hammar, P.; Sun, J.; Cordova, A.
Chem.;Eur. J. 2009, 15, 10013–10017. (c) Kamlar, M.; Bravo, N.; Alba,
ꢀ
ꢁ
ꢀ
ꢀ
A.-N. R.; Hybelbauerova, S.; Cısarova, I.; Vesely, J.; Moyano, A.; Rios,
R. Eur. J. Org. Chem. 2010, 5464–5470. For other utilities of FNSM, see:
(d) Prakash, G. K. S.; Chacko, S.; Alconcel, S.; Stewart, T.; Mathew, T.;
Olah, G. A. Angew. Chem., Int. Ed. 2007, 46, 4933–4936. (e) Prakash,
G. K. S.; Zhao, X.; Chacko, S.; Wang, F.; Vaghoo, H.; Olah, G. A.
Beilstein J. Org. Chem. 2008, 4, 17. (f) Pan, Y.; Zhao, Y.; Ma, T.; Yang,
Y.; Liu, H.; Jiang, Z.; Tan, C.-H. Chem.;Eur. J. 2010, 16, 779–782.
(17) NSM can be obtained via the oxidation of PhSCH2NO2, which
can be prepared using PhSCl and NaCH2NO2; see: (a) Barrett,
A. G. M.; Dhanak, D.; Graboski, G. G.; Taylor, S. J. Org. Synth.
1990, 68, 8–13. Using PhSCH2N3 and F2/H2O/CH3CN system, see:
(b) Carmeli, M.; Rozen, S. J. Org. Chem. 2006, 71, 4585–4589.
(8) For selected examples of nontransition metal catalyzed asymmetric
conjugate addition of malononitrile, see: (a) Taylor, M. S.; Zalatan, D. N.;
Lerchner, A. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 1313–1317.
(b) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.; Duan, W.; Wang, W. J. Am.
Chem. Soc. 2006, 128, 12652–12653. (c) Li, X.; Cun, L.; Lian, C.; Zhong, L.;
Chen, Y.; Liao, J.; Zhu, J.; Deng, J. Org. Biomol. Chem. 2008, 6, 349–353.
(d) Naka, H.; Kanase, N.; Ueno, M.; Kondo, Y. Chem.;Eur. J. 2008, 14,
5267–5274. (e) Shi, J.; Wang, M.; He, L.; Zheng, K.; Liu, X.; Lin, L.; Feng,
X. Chem. Commun. 2009, 4711–4713. (f) Pansare, S. V.; Lingampally, R.
Org. Biomol. Chem. 2009, 7, 319–324.
(18) Basedon a known procedure:Weigl, U.; Heimberger, M.; Pierik,
ꢀ
A. J.; Retey, J. Chem.;Eur. J. 2003, 9, 652–660. See SI for details.
(19) For pioneer work on thiourea catalysis, see: (a) Sigman, M. S.;
Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901–4902. (b) Schreiner,
P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217–220. (c) Wittkopp, A.;
Schreiner, P. R. Chem.;Eur. J. 2003, 9, 407–414. (d) Okino, T.; Hoashi,
Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672–12673. (e) Wang,
J.; Li, H.; Yu, X.; Zu, L.; Wang, W. Org. Lett. 2005, 7, 4293–4296.
€
(9) Forster, S.; Tverskoy, O.; Helmchen, G. Synlett 2008, 2803–2806.
(10) Material Safety Data Sheets (MSDS) from Sigma-Aldrich Inc.
(11) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456–463.
ꢀ
ꢀ
(f) Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7,
1967–1969. (g) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed.
2005, 44, 6367–6370. (h) Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y.
Org. Lett. 2006, 8, 2901–2904.
(12) Other synthetic utilities of NSM, see: (a) Wade, P. A.; Morrow,
S. D.; Hardinger, S. A.; Saft, M. S.; Hinney, H. R. J. Chem. Soc., Chem.
Commun. 1980, 287–288. (b) Wade, P. A.; Hinney, H. R.; Amin, N. V.;
Vail, P. D.; Morrow, S. D.; Hardinger, S. A.; Saft, M. S. J. Org. Chem.
1981, 43, 765–770.
(13) The Nef reaction: Pinnick, H. W. Org. React. 1990, 38, 655–792.
(14) Bonaparte, A. C.; Betush, M. P.; Panseri, B. M.; Mastarone,
D. J.; Murohy, R. K.; Murphree, S. S. Org. Lett. 2011, 13, 1447–1449
and the references therein.
(15) (a) Trost, B. M.; Kuo, G.-H.; Benneche, T. J. Am. Chem. Soc. 1988,
110, 621–622. (b) Trost, B. M.; Madsen, R.; Guile, S. G.; Elia, A. E. H.
Angew. Chem., Int. Ed. Engl. 1976, 35, 1569–1572. (c) Trost, B. M.; Madsen,
R.; Guile, S. D.; Brown, B. J. Am. Chem. Soc. 2000, 122, 5947–5956.
(20) Significantly enhanced nucleophilicity of fluorodinitromethide
in conjugate addition was previously reported. Kaplan, L. A.; Pickard,
H. B. J. Chem. Soc., Chem. Commun. 1969, 1500–1501.
(21) For discussions on fluorine effects on R-fluorocarbanions, see:
(a) Qian, C.-P.; Nakai, T.; Dixon, D. A.; Smart, B. E. J. Am. Chem. Soc.
1990, 112, 4602–4604. (b) Castejon, H. J.; Wiberg, K. B. J. Org. Chem.
1998, 63, 3937–3942. (c) Ni, C.; Zhang, L.; Hu, J. J. Org. Chem. 2008, 73,
5699–5713. (d) Prakash, G. K. S.; Wang, F.; Shao, N.; Mathew, T.;
Rasul, G.; Haiges, R.; Stewart, T.; Olah, G. A. Angew. Chem., Int. Ed.
2009, 48, 5358–5362. (e) Ni, C.; Hu, J. Synlett 2011, 770–782.
B
Org. Lett., Vol. XX, No. XX, XXXX