sodium azide, and alkyne reported by Fokin et al.6 in
which the aryl azide was generated in situ through an
Ullmann CꢀN coupling reaction and immediately con-
sumed in the CuAAC reaction to form 1,4-substituted
1,2,3-triazoles.7 Ackermann et al. further developed this
one-pot reaction8 through a sequential CꢀH functionali-
zation by reacting the 1,4-disubstituted 1,2,3-triazoles and
aryl iodides at 140 °C with t-BuOLi as the base to afford
fully decorated 1,2,3-triaoles. Similar strategies were also
successfully applied in the Pd-catalyzed direct arylation of
1,2,3-triazoles.9,10
cycloaddition/copper-catalyzed intramolecular Ullmann
CꢀN coupling process.13 However, to the best of our
knowledge, no combination of CuAAC and Ullmann
CꢀC coupling has been reported for developing novel
tandem reactions. In this paper, we want to disclose our
research in the trapping of the CꢀCu intermediate pro-
duced in the CuAAC reaction through an intramolec-
ular Ullmann CꢀC coupling reaction, leading to the
formation of 1H-[1,2,3]triazolo[4,5-c]quinolin-4(5H)-ones
(Scheme 1).14
The mechanism of CuAAChasbeen clearly documented
as a [3 þ 2] process with the formation of a highly reactive
CꢀCu intermediate that undergoes rapid protonation to
form the stable 1,4-disubstituted 1,2,3-triazoles.2 It has
been reported that the organocopper intermediates could
also be trapped by electrophiles such as ICl, alkyl halides,
or acyl halides to produce 1,4,5-trisubstituted 1,2,3-tria-
zole rather than protonation.11 However, such reactions
always needed stiochiomeric amounts of copper salts for
efficient producing of the organocopper intermediate and
excessive electrophiles for the trapping. During our con-
tinuing work in developing novel catalyzed tandem reac-
tions by trapping organocopper intermediates,12 we
envisioned that the CꢀCu species produced in CuAAC
may be a reactive intermediate for further Ullmann CꢀC
coupling reaction and would lead to the formation of 1,4,
5-trisubstituted 1,2,3-triazoles directly. Recently, we re-
ported a copper-catalyzed tandem reaction of N-(2-
haloaryl)propiolamides with sodium azide for the synth-
esis of [1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-ones.12d The
tandem reaction was proposedtoproceedthrougha [3 þ 2]
Scheme 1. Design of CuAACꢀIntramolecular Ullmann CꢀC
Coupling Tandem Reactions
Table 1. Condition Screeninga
(6) Feldman, A. K.; Colasson, B.; Fokin, V. V. Org. Lett. 2004, 6,
3897.
entry
substrate
solvent
DMSO
product
yieldb (%)
(7) For other selected examples involving in situ generated organic
azides followed by click chemistry in one pot, see: (a) Alonso, F.; Moglie,
Y.; Radivoy, G.; Yus, M. J. Org. Chem. 2011, 76, 8394. (b) Li, W.-T.; Wu,
W.-H.; Tang, C.-H.; Tai, R.; Chen, S.-T. ACS Comb. Sci. 2011, 13, 72.
(c) Attanasi, O. A.; Favi, G.; Filippone, P.; Mantellini, F.; Moscatelli, G.
Perrulli, F. R. Org. Lett. 2010, 12, 468. (d) Reddy, P. S.; Sreedhar, B.
Synthesis 2009, 24, 4203. (e) Kumar, D.; Reddy, V. B.; Varma, R. S.
Tetrahedron Lett. 2009, 50, 2065. (f) Chttaboina, S.; Xie, F.; Wang, Q.
Tetrahedron Lett. 2005, 46, 2331. (g) Kacprzak, K. Synlett 2005, 943.
(h) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org.
Lett. 2004, 6, 4223.
c
1
2
3
4
5
6
7
8
9
1a
1b
1c
1d
1e
1b
1b
1b
1b
3a
3b
3c
3d
3a
3b
3b
3b
3b
DMSO
DMSO
DMSO
DMSO
DMF
97d
99
97
32
87
85
72
21
MeCN
1,4-dioxane
H2O
(8) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R.
Org. Lett. 2008, 10, 3081.
(9) For a review about the CuAAC/CꢀH bond functionalization,
see: Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503.
(10) For selected examples of Pd-catalyzed arylation of 1,2,3-tria-
zoles, see: (a) Ackermann, L.; Jeyachandran, R.; Potukuchi, H. K.;
a Reagents and conditions: 1 (0.5 mmol), 2a (0.5 mmol), CuI
(0.05 mmol), K2CO3 (1.0 mmol), solvent 1 mL, rt, 1 h. b Isolated yields.
c No 3a was detected. d 23% of 3b was isolated without the base.
ꢀ
€
Novak, P.; Butter, L. Org. Lett. 2010, 12, 2056. (b) Panteleev, J.; Geyer,
K.; Aguilar-Aguilar, A.; Wang, L.; Lautens, M. Org. Lett. 2010, 12,
5092. (c) Ackermann, L.; Vicente, R. Org. Lett. 2009, 11, 4922. (d)
Ackermann, L.; Vicente, R.; Born, R. Adv. Synth. Catal. 2008, 350, 741.
(e) Basolo, L.; Beccalli, E. M.; Borsini, E.; Broggini, G.; Pellegrino, S.
Tetrahedron 2008, 64, 8182. (f) Iwasaki, M.; Yorimitsu, H.; Oshima, K.
Chem. Asian J. 2007, 2, 1430. (g) Chuprakov, S.; Chenyak, N.; Dudnik,
A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333.
(11) (a) Wu, Y.-M.; Deng, J.; Li, Y.; Chen, Q.-Y. Synthesis 2005,
1314. (b) Cassidy, M. P.; Raushel, J.; Fokin, V. V. Angew. Chem., Int.
Ed. 2006, 45, 3154.
(12) (a) Zhou, F.; Liu, J.; Ding, K.; Liu, J.; Cai, Q. J. Org. Chem.
2011, 76, 5346. (b) Zhou, F.; Fu, L.; Wei, J.; Ding, K.; Cai, Q. Synthesis
2011, 3037. (c) Cai, Q.; Zhou, F.; Xu, T.; Fu, L.; Ding, K. Org. Lett.
2011, 13, 340. (d) Yan, J.; Zhou, F.; Qin, D.; Cai, T.; Ding, K.; Cai, Q.
Org. Lett. 2012, 14, 1262.
To test the idea of intramolecular trapping of the
organocopper intermediate produced in the CuAAC reac-
tion, we initially explored the copper-catalyzed reaction of
(13) For selected examples of the combination of triazole formation
with other reactions such as the Biginelli reaction, Ugi reaction, etc., see:
(a) Khanetskyy, B.; Dallinger, D.; Kappe, C. O. J. Comb. Chem. 2004, 6,
884. (b) Akritopoulou-Zanze, I.; Gracias, V.; Djuric, S. W. Tetrahedron
Lett. 2004, 45, 8439. (c) Ramachary, D. B.; Barbas, C. F., III. Chem. Eur,
J. 2004, 10, 5323.
(14) For the biological activity exploration of such compounds, see:
Suzuki, F.; Kuroda, T.; Nakasato, Y.; Manabe, H.; Ohmori, K.;
Kitamura, S.; Ichikawa, S.; Ohno, T. J. Med. Chem. 1992, 35, 4045.
Org. Lett., Vol. 14, No. 13, 2012
3333