D
V. Taşdemir et al.
Letter
Synlett
In conclusion, we investigated the oximation of N-prop-
argyl-2 aroylimidazole derivatives. When pyridine was
used as both base and solvent, the product of oximation of
the carbonyl group was obtained exclusively. Monooxime
derivatives were subjected to alkyne cyclization by copper
salts to yield imidazopyrazine N-oxides. Both copper(I) and
copper(II) salts gave the same cyclization products in differ-
ent yields. However, the optimal reaction was achieved
with CuI, which is a cheap and low-toxicity catalyst. Silver,
gold, and iron salts were ineffective for the cyclization, pos-
sibly because of the higher catalytic activity of copper in C–
X (X = C, N, O) coupling reactions. The developed cyclization
protocol afforded novel bicyclic imidazole skeletons con-
taining aryl substituents. Aromaticity values were calculat-
ed, and the aromaticities of the imidazole and N-oxide rings
were found to be different. This feature of these bicyclic
molecules might provide an opportunity for selective reac-
tions.
(6) Taskaya, S.; Menges, N.; Balcı, M. Beilstein J. Org. Chem. 2015, 11,
897.
(7) Boyle, J. W.; Zhao, Y.; Chan, P. W. H. Synthesis 2018, 50, 1402.
(8) Ding, Q.; Wang, D.; Sang, X.; Lin, Y.; Peng, Y. Tetrahedron 2012,
68, 8869.
(9) Ye, S.; Wang, H.; Wu, J. Eur. J. Org. Chem. 2010, 6436.
(10) Guven, S.; Ozer, M. S.; Kaya, S.; Menges, N.; Balcı, M. Org. Lett.
2015, 17, 2660.
(11) Yuan, B.; Zhang, F.; Li, Z.; Yang, S.; Yan, R. Org. Lett. 2016, 18, 5928.
(12) Senadi, G. C.; Wang, J.-Q.; Gore, B. S.; Wang, J.-J. Adv. Synth.
Catal. 2017, 359, 2747.
(13) Boiani, M.; Cerecetto, H.; González, M.; Piro, O. E.; Castellano, E.
E. J. Phys. Chem. 2004, 108, 11241.
(14) Laroche, C.; Gilbreath, B.; Kerwin, S. M. Tetrahedron 2014, 70,
4534.
(15) Georges, G. J.; Vercauteren, D. P.; Evrard, G. H.; Durant, F. V.;
George, P. G.; Wick, A. E. Eur. J. Med. Chem. 1993, 28, 323.
(16) Kuzu, B.; Genç, H.; Taşpınar, M.; Tan, M.; Mengeş, N. Heteroatom.
Chem. 2018, 29, e21412; DOI: 10.1002/hc.21412.
(17) Kuzu, B.; Tan, M.; Ekmekci, Z.; Menges, N. J. Lumin. 2017, 192,
1096.
(18) Nagaraj, M.; Muthusubramanian, S. J. Chem. Sci. (Amritsar, India)
2016, 128, 451.
Funding Information
(19) Gaussian 09, Revision D.01; Gaussian, Inc: Wallingford, 2009.
(20) (a) Liu, Y.; Wan, J.-P. Org. Biomol. Chem. 2011, 9, 6873. (b) Ge, Q.;
Zong, J.; Li, B.; Wang, B. Org. Lett. 2017, 19, 6670. (c) Aradi, K.;
Bombicz, P.; Novák, Z. J. Org. Chem. 2016, 81, 920. (d) Voigtritter,
K.; Ghorai, S.; Lipshutz, B. H. J. Org. Chem. 2011, 76, 4697.
(21) Imidazo[1,2-a]pyrazine N-Oxides 5a–g and 6a; General Pro-
cedure
This study was funded by Scientific and Technologic Research Agency
of Turkey (TÜBİTAK) (grant numbers:115Z894).()
Acknowledgment
The appropriate N-propargylimidazole oxime derivative 2a–g,
4a, or 4h (1 mmol) was dissolved in PrOH (5 mL) in a 25 mL
flask. A catalytic amount of CuI (10 mol%) was added, and the
mixture was refluxed for the appropriate time until the reac-
tion was completed (TLC). The mixture was then extracted with
EtOAc–H2O (3 × 40 mL). The organic layer was dried (MgSO4)
and concentrated under reduced pressure to give a crude
product that was purified by column chromatography. The
products were further purified by preparative TLC (hexane–
EtOAc, 5:1).
Authors thank to TUBİTAK for funding and Van Yüzüncü Yıl Universi-
ty, Faculty of Pharmacy and Science Research and Applied Center for
their research laboratories.
Authors also thank to graphic artist Gül Menges for designing the
graphical abstract.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
6-Methyl-2,8-diphenylimidazo[1,2-a]pyrazine 7-Oxide (5a)
Reaction time:
3 h; eluent for column chromatography:
hexane–EtOAc (1:1).
References and Notes
Brown solid; yield: 250 mg (83%); mp 193–195 °C. FTIR (ATR):
3140, 3038, 2969, 2925, 2163, 1732, 1660, 1604, 1576, 1496,
1489 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.23 (d, J = 6.91 Hz, 2
H, Ar-H), 7.93–7.89 (m, 3 H, Ar-H), 7.78 (s, 1 H, Ar-H), 7.55–7.48
(m, 4 H, Ar-H), 7.41 (t, J = 7.36 Hz, 2 H, Ar-H), 2.51 (s, 3 H, CH3).
13C NMR (100 MHz, CDCl3): δ = 148.9, 132.6, 131.0, 130.3, 128.7,
128.6, 127.9, 127.8, 126.3, 116.9, 108.8, 15.5. LCMS: m/z [M +
H]+ Calcd for C19H16N3O: 302.12879; found: 302.12958.
(22) Hagos, T. K. M.S. Dissertation; University of Stellenbosch, 2006.
(23) von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.; van
Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317.
(24) Menges, N.; Bildirici, I. J. Chem. Sci. (Amritsar, India) 2017, 129,
741.
(25) (a) Sun, K.; Chen, X.-L.; Li, X.; Qu, L.-B.; Bi, W.-Z.; Chen, X.; Ma,
H.-L.; Zhang, S.-T.; Han, B.-W.; Zhao, Y.-F.; Li, C.-J. Chem.
Commun. 2015, 51, 12111. (b) Yang, Y.; Qu, C.; Chen, X.; Sun, K.;
Qu, L.; Bi, W.; Hu, H.; Li, R.; Jing, C.; Wei, D.; Wei, S.; Sun, Y.; Liu,
H.; Zhao, Y. Org. Lett. 2017, 19, 5864. (c) Li, D.-Y.; Huang, Z.-L.;
Liu, P.-N. Org. Lett. 2018, 20, 2028.
(1) Dimova, D.; Lyer, P.; Vogt, M.; Totzke, F.; Kubbutat, M. H. G.;
Schachtele, C.; Laufer, S.; Bajorath, J. J. Med. Chem. 2012, 55,
11067.
(2) Thompson, A. M.; O’Connor, P. D.; Marshall, A. J.; Yardley, V.;
Maes, L.; Gupta, S.; Launay, D.; Braillard, S.; Chatelain, E.;
Franzblau, S. G.; Wan, B.; Wang, Y.; Ma, Z.; Cooper, C. B.; Denny,
W. A. J. Med. Chem. 2017, 60, 4212.
(3) Moldovan, R. P.; Hausmann, K.; Deuther-Conrad, W.; Brust, P.
ACS Med. Chem. Lett. 2017, 8, 566.
(4) (a) O'Donnell, G.; Poeschl, R.; Zimhony, O.; Gunaratnam, M.;
Moreira, J. B. C.; Neidle, S.; Evangelopoulos, D.; Bhakta, S.;
Malkinson, J. P.; Boshoff, H. I.; Lenaerts, A.; Gibbons, S. J. Nat.
Prod. 2009, 72, 360. (b) Nicholas, G. M.; Blunt, J. W.; Munro, M.
H. G. J. Nat. Prod. 2001, 64, 341. (c) Wang, C.; Wang, E.; Chen,
W.; Zhang, L.; Zhan, H.; Wu, Y.; Cao, H. J. Org. Chem. 2017, 82,
9144.
(5) Özer, M. S.; Menges, N.; Keskin, S.; Şahin, E.; Balci, M. Org. Lett.
2016, 18, 408.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D