Continuous Flow Photochemistry
163
deprotection step. Thus, the three-step-in-one-flow protocol
(glycosylation-deoxygenation-deprotection)
team for stimulating discussions. Additional thanks to Edward Mitchell
(James Glass, Inc.) for fabricating the quartz tubing coils.
successfully
afforded thymidine (6a) and the anti-HIV drug edoxudine (6b)
in 72 % and 66 % yield, respectively. With the total residence
time less than 1 h, this telescoped procedure has demonstrated a
more efficient process for the synthesis of 20-deoxynucleosides.
Deuterium-labelled deoxynucleosides are useful for the
investigation of interactions of a sugar moiety in DNA with a
protein or a drug by NMR spectroscopy.[15] When we used [d8]
isopropanol as the solvent, 20-deoxy-[20-D]ribonucleoside 9 was
isolated in a good yield with ,5 : 1 dr at C-20, favouring the
C10-C20 trans diastereomer (Scheme 6). Similar substrate-
controlled diastereoselectivity has been observed in radical
deoxygenation[3b,16] or dehalogenation[17] using Bu3SnD; the
method described herein eschews this toxic and expensive
reagent. Deuterium atom transfer was substantially slower than
hydrogen atom transfer. The reaction in [d8]isopropanol
required the use of 20 mol-% carbazole 2a and 25 min to achieve
complete conversion (cf. 10 mol-% catalyst and 10 min in
iPrOH). Our flow photochemical set-up not only facilitates the
straightforward synthesis of deuterated deoxynucleoside 9, but
also provides a convenient means to investigate the mechanism
of the deoxygenation reaction using only a small amount of
the substrate and solvent. When (CH3)2CHOD was used as
the solvent, no deuterium incorporation was identified in the
product, and no kinetic isotope effect was observed, clearly
indicating that either a CH3 or CH group (likely the latter) of
iPrOH is the source of the hydrogen atom transferred to the
product.
References
[1] (a) E. Ichikawa, K. Kato, Curr. Med. Chem. 2001, 8, 385.
(b) Nucleosides and Nucleotides as Antitumor and Antiviral Agents
(Eds C. K. Chu, D. C. Baker) 1993 (Plenum Press: New York, NY).
(c) G. J. Peters, Deoxynucleoside Analogs in Cancer Therapy 2006
(Humana Press: Totowa, NJ).
(d) P. Herdwijn, Modified Nucleosides: in Biochemistry, Biotechno-
logy and Medicine 2008 (Wiley-VCH: Weinheim).
(e) C. Pe´rigaud, G. Gosselin, J. L. Imbach, Nucleosides Nucleotides
1992, 11, 903. doi:10.1080/07328319208021748
[2] (a) H. Vorbru¨ggen, C. Ruh-Pohlenz, Handbook of Nucleoside Synthe-
sis 2001, pp. 51–60 (John Wiley & Sons, Inc: New York, NY).
(b) D. M. Huryn, M. Okabe, Chem. Rev. 1992, 92, 1745. doi:10.1021/
CR00016A004
[3] (a) M. J. Robins, J. S. Wilson, J. Am. Chem. Soc. 1981, 103, 932.
doi:10.1021/JA00394A033
(b) M. J. Robins, J. S. Wilson, F. Hansske, J. Am. Chem. Soc. 1983,
105, 4059. doi:10.1021/JA00350A052
[4] (a) U. Niedballa, H. Vorbru¨ggen, Angew. Chem. Int. Ed. Engl. 1970, 9,
461. doi:10.1002/ANIE.197004612
(b) H. Vorbru¨ggen, K. Krolikiewicz, Angew. Chem. Int. Ed. Engl.
1975, 14, 421. doi:10.1002/ANIE.197504211
(c) H. Vorbru¨ggen, K. Krolikiewicz, B. Bennua, Chem. Ber. 1981, 114,
1234. doi:10.1002/CBER.19811140404
[5] (a) M. Park, C. J. Rizzo, J. Org. Chem. 1996, 61, 6092. doi:10.1021/
JO960936J
(b) Z. W. Wang, C. J. Rizzo, Tetrahedron Lett. 1997, 38, 8177.
doi:10.1016/S0040-4039(97)10251-9
The PET deoxygenation mechanism has been discussed in
earlier reports (Scheme 7).[5c,6] Our studies provided further
understanding of the reaction mechanism in that: (1) a more
electron-rich carbazole photosensitizer facilitates the reaction as
it can better stabilize radical cation intermediate 10; (2) a protic
solvent is essential, as radical anion intermediate 11 needs to be
protonated to eliminate a carboxylic acid rather than a carbox-
ylate; and (3) the methine CH is most likely the source of
hydrogen that results in the deoxygenated product.
(c) D. R. Prudhomme, Z. W. Wang, C. J. Rizzo, J. Org. Chem. 1997,
62, 8257. doi:10.1021/JO971332Y
(d) Z. W. Wang, D. R. Prudhomme, J. R. Buck, M. Park, C. J. Rizzo,
J. Org. Chem. 2000, 65, 5969. doi:10.1021/JO0003652
[6] (a) I. Saito, H. Ikehira, R. Kasatani, M. Watanabe, T. Matsuura, J. Am.
Chem. Soc. 1986, 108, 3115. doi:10.1021/JA00271A057
(b) H. Deshayes, J. P. Pete, C. Portella, D. Scholler, J. Chem. Soc.,
Chem. Comm. 1975, 439. doi:10.1039/C39750000439
(c) H. Deshayes, J. P. Pete, C. Portella, Tetrahedron Lett. 1976, 17,
2019. doi:10.1016/S0040-4039(00)93806-1
In conclusion, we have developed a unique flow photochem-
ical reactor featuring quartz tubing, an aluminium mirror, and
temperature control. With this setup, PET deoxygenation
reactions in flow afforded protected deoxynucleosides in high
yields and selectivity, in a short residence time. The new
electron-rich carbazole 2c further improves reactivity. Both
natural and non-natural deoxynucleosides were prepared with
high efficiency and reproducibility. The continuous multi-step,
one-flow sequence produced unprotected 20-deoxy and 20,30-
dideoxy ribonucleosides in a streamlined manner, including
important drugs edoxudine and didanosine. Our studies also
provided further understanding of the reaction mechanism. We
believe that this contribution not only improves the synthesis of
deoxynucleosides, but will also incite further interest and
development of other photochemical transformations in flow.
[7] (a) For recent general reviews on continuous flow chemistry see:
C. Wiles, P. Watts, Chem. Commun. 2011, 47, 6512. doi:10.1039/
C1CC00089F
(b) J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47,
4583. doi:10.1039/C0CC05060A
(c) R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew. Chem. Int. Ed.
2011, 50, 7502. doi:10.1002/ANIE.201004637
(d) J. I. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 4, 331.
doi:10.1002/CSSC.201000271
(e) T. Illg, P. Lob, V. Hessel, Bioorg. Med. Chem. 2010, 18, 3707.
doi:10.1016/J.BMC.2010.03.073
(f) R. L. Hartman, K. F. Jensen, Lab Chip 2009, 9, 2495. doi:10.1039/
B906343A
(g) K. Geyer, T. Gustafsson, P. H. Seeberger, Synlett 2009, 2382.
(h) T. Wirth, Microreactors in Organic Synthesis and Catalysis 2008
(Wiley-VCH: Weinheim).
(i) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T.
McQuade, Chem. Rev. 2007, 107, 2300. doi:10.1021/CR050944C
(j) P. Watts, C. Wiles, Chem. Commun. 2007, 443. doi:10.1039/
B609428G
(k) A. Kirschning, W. Solodenko, K. Mennecke, Chem. – Eur. J. 2006,
12, 5972. doi:10.1002/CHEM.200600236
Supplementary Material
Supplementary Material containing detailed experimental pro-
cedures and characterization data for new compounds are
available on the Journal’s website.
(l) K. Ja¨hnisch, V. Hessel, H. Lowe, M. Baerns, Angew. Chem. Int. Ed.
2004, 43, 406. doi:10.1002/ANIE.200300577
[8] (a) For recent reviews on photochemistry in flow, see: M. Oelgemoller,
O. Shvydkiv, Molecules 2011, 16, 7522. doi:10.3390/MOLE
CULES16097522
Acknowledgement
This work was supported by the Novartis-MIT Center for Continuous
Manufacturing. The authors would like to thank the members of the Novartis