1650
A. Alsbaiee et al. / Tetrahedron Letters 53 (2012) 1645–1651
213 mg, 61%). This material (163 mg 0.313 mmol) was then dis-
solved in DMF (10 mL), treated with Et3N (132 L, 0.964 mmol),
Acknowledgments
l
and sonicated until it dissolved. Aldehyde 1 (400 mg, 0.625 mmol)
was then added and the solution was stirred for ca. 10 min before
the addition of NaBH(OAc)3 (272 mg, 1.28 mmol). The mixture was
stirred at rt for 24 h before the DMF was removed under reduced
pressure. The viscous yellow residue was then dissolved in EtOAc,
washed with ddH2O, brine, and dried over anhydrous Na2SO4. Fil-
tration, followed by silica gel flash chromatography (0–5% MeOH/
DCM) offered the coupled adduct 10 as a solid (C79H103N17O21S,
269 mg, 51%). Rf = 0.42 (SiO2, 5% MeOH/CH2Cl2). mp = 88.8–
89.3 °C. 1H NMR (600 MHz, CD3OD) d (ppm) 7.88–7.31 (15H, m),
5.60 (4H, s), 4.32 (4H, t, J = 7.3 Hz), 3.92 (4H, br s), 3.88–3.84 (4H,
m), 3.44 (6H, s), 3.34–3.29 (2H, m), 2.93 (4H, t, J = 7.0 Hz), 2.86
(2H, s), 2.82 (4H, t, J = 7.3 Hz), 1.54 (18H, s), 1.28 (36H, s). 13C
NMR (150 MHz, CD3OD) d (ppm) 190.8, 170.8, 170.6, 170.1,
169.9, 165.8, 161.6, 160.9, 160.5, 156.2, 152.5, 149.3, 136.1,
135.0, 133.7, 128.7, 128.33, 128.32, 126.9, 92.9, 84.2, 83.0, 70.1,
51.3, 42.9, 42.5, 42.2, 41.5, 37.6, 35.5, 34.3, 32.1, 27.1, 26.7. HRMS
(ESI): calcd for (M+H)+/z = 1658.7308. Found 1658.7315. Elemental
analysis: Found: C 56.51; H 6.29; N 13.95; S 1.94. Calc. for
[C79H103N17O21S+CH3OH]: C, 56.83; H, 6.38; N, 14.08 S, 1.90.
We thank the National Research Council of Canada (NRC), the
University of Alberta, and the Natural Science and Engineering Re-
search Council (NSERC) for supporting this research program. A.A.
thanks Alberta Innovates for the Alberta Innovates Graduate Stu-
dent Scholarship in Nanotechnology.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Fenniri, H.; Deng, B. L.; Ribbe, A. E. J. Am. Chem. Soc. 2002, 124, 11064–
11072; (b) Moralez, J. G.; Raez, J.; Yamazaki, T.; Motkuri, R. K.; Kovalenko, A.;
Fenniri, H. J. Am. Chem. Soc. 2005, 127, 8307–8309; (c) Fenniri, H.; Deng, B. L.;
Ribbe, A. E.; Hallenga, K.; Jacob, J.; Thiyagarajan, P. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 6487–6492; (d) Raez, J.; Moralez, J. G.; Fenniri, H. J. Am. Chem. Soc.
2004, 126, 16298–16299; (e) Fenniri, H.; Mathivanan, P.; Vidale, K. L.; Sherman,
D. M.; Hallenga, K.; Wood, K. V.; Stowell, J. G. J. Am. Chem. Soc. 2001, 123, 3854–
3855; (f) Beingessner, R. L.; Deng, B.-L.; Fanwick, P. E.; Fenniri, H. J. Org. Chem.
2008, 73, 931–939; (g) Tikhomirov, G.; Oderinde, M.; Makeiff, D.; Mansouri, A.;
Liu, W.; Heirtzler, F. R.; Kwok, D. Y.; Fenniri, H. J. Org. Chem. 2008, 73, 4248–
4251.
Compound 11
2. Beingessner, R. L.; Diaz, J. A.; Hemraz, U. D.; Fenniri, H. Tetahedron Lett. 2011,
52, 661–664.
3. (a) Borzsonyi, G.; Beingessner, R. L.; Yamazaki, T.; Cho, J.-Y.; Myles, A. J.; Malac,
M.; Egerton, R.; Kawasaki, M.; Ishizuka, K.; Kovalenko, A.; Fenniri, H. J. Am.
Chem. Soc. 2010, 132, 15136–15139; (b) Borzsonyi, G.; Johnson, R. S.; Myles, A.
J.; Cho, J.-Y.; Yamazaki, T.; Beingessner, R. L.; Kovalenko, A.; Fenniri, H. Chem.
Comm. 2010, 46, 6527–6529; (c) Borzsonyi, G.; Alsbaiee, A.; Beingessner, R. L.;
Fenniri, H. J. Org. Chem. 2010, 75, 7233–7239.
4. (a) Chun, A. L.; Moralez, J. G.; Webster, T. J.; Fenniri, H. Biomaterials 2005, 26,
7304–7309; (b) Chun, A. L.; Moralez, J. G.; Fenniri, H.; Webster, T. J.
Nanotechnology 2004, 15, S234–S239; (c) Zhang, L.; Rodriguez, J. R.; Myles, A.
J.; Fenniri, H.; Webster, T. J. Nanotechnology 2009, 20, 175101 (12 p).; (d) Zhang,
L.; Rakotondradany, F.; Myles, A. J.; Fenniri, H.; Webster, T. J. Biomaterials 2009,
30, 1309–1320; (e) Zhang, L.; Ramsaywack, S.; Fenniri, H.; Webster, T. J. Tissue
Eng., Part A. 2008, 14, 1353–1364; (f) Suri, S. S.; Rakotondradani, F.; Myles, A. J.;
Fenniri, H.; Singh, B. Biomaterials 2009, 30, 3084–3090; (g) Zhang, L.; Chen, Y.;
Rodriguez, J.; Fenniri, H.; Webster, T. J. Int. J. Nanomedicine 2008, 3, 323–333;
(h) Chen, Y.; Pareta, R. A.; Bilgen, B.; Myles, A. J.; Fenniri, H.; Ciombor, D. M.;
Aaron, R. K.; Webster, T. J. Tissue Eng. Part C 2010, 16, 1233–1243; (i) Zhang, L.;
Hemraz, U. D.; Fenniri, H.; Webster, T. J. J. Biomed. Mater. Res. A 2010, 95A, 550–
563.
Compound 10 (200 mg, 0.121 mmol) was dissolved in 5 mL of
95% TFA/thioanisole (5 mL, v/v) and stirred at rt for 4 h. Et2O was
then added to precipitate the product which was purified by exten-
sive washing with Et2O and CH2Cl2 to afford 11 (C35H44N17O9S,
132 mg, 89%) as a white solid. mp = decomposed at 287 °C. 1H
NMR (600 MHz, DMSO-d6+1 drop of d-TFA+D2O) d (ppm): 7.89–
7.88 (2H, m), 7.68–7.66 (1H, m), 7.55–7.52 (2H, m), 4.40 (4H, br
s), 3.84 (2H, s), 3.76 (2H, s), 3.72 (2H, s), 3.65 (2H, s), 3.59–3.54
(4H, m), 3.48–3.43 (4H, m), 2.91 (6H, br s). 13C NMR (150 MHz,
DMSO-d6+one drop of d-TFA) d (ppm): 190.8, 170.3, 169.8, 167.8,
162.4, 161.7, 160.2, 156.5, 156.0, 148.7, 136.3, 134.5, 129.6,
127.3, 82.9, 52.2, 49.9, 43.0, 42.6, 42.5, 40.4, 36.8, 32.9, 28.4. HRMS
(MALDI): calcd for (M+H)+/z = 878.3223. Found 878.3224. Elemen-
tal analysis: Found: C, 39.77; H, 3.97; N, 18.88; S, 2.87. Calcd for
[C35H44N17O9S+(CF3COOH)3+H2O]: C, 39.78; H, 3.91; N, 19.23; S,
2.59.
5. Fine, E.; Zhang, L. J.; Fenniri, H.; Webster, T. J. Int. J. Nanomedicine 2009, 4, 91–
97.
6. Alshamsan, A.; El-Bakkari, M.; Fenniri, H. Mater. Res. Soc. Symp. Proc. 2010, 2011,
1316–1319.
7. Chen, Y.; Song, S.; Yan, Z.; Fenniri, H.; Webster, T. J. Int. J. Nanomedicine 2011, 6,
1035–1044.
Compound 12
8. Song, S.; Chen, Y.; Yan, Z.; Fenniri, H.; Webster, T. J. Int. J. Nanomedicine 2011, 6,
101–107.
9. Chhabra, R.; Moralez, J. G.; Raez, J.; Yamazaki, T.; Cho, J.-Y.; Myles, A. J.;
Kovalenko, A.; Fenniri, H. J. Am. Chem. Soc. 2010, 132, 32–33.
A mixture of 50:50 MeOH/DMF (2.5 mL) in a round bottom flask
was degassed by bubbling argon for 30 min and then transferred to
an argon filled round bottom flask containing a mixture of 11
(10.0 mg, 0.0082 mmol), ReOCl3(PPh3)2 (14.5 mg, 0.016 mmol,
2 equiv), and CH3ONa (9.0 mg, 0.167 mmol, 20 equiv). The suspen-
sion was stirred at room temperature under positive argon pres-
sure. After 30 min, the cloudy green solution turned into a cloudy
brown color. Diethyl ether was then added which precipitated
the brown complex immediately. The precipitate was then trans-
ferred with the solution into a centrifuge tube and centrifuged.
The isolated solid was washed with diethyl ether (3ꢁ), hexane
(3ꢁ), benzene (3ꢁ), chloroform (3ꢁ), CH2Cl2 (3ꢁ), and ddH2O
(2ꢁ). The solid was then dried under vacuum to provide 12
(C28H35N17O9SRe, 8 mg, 94%). 1H NMR (600 MHz, DMSO-d6 + 1
drop of TFA-d) d (ppm): 4.45–4.43 (4 H, m), 4.18–4.10 (2H, m),
3.81 (2H, s), 3.78–3.75 (2H, m), 3.72–3.70 (2H, m), 3.59 (4H, br
s), 3.53–3.47 (4H, m), 2.96 (6H, br s). Low Resolution LC–MS: calcd
for (M+2H)+/z = 974.2. Found 974.3. HRMS (MALDI): calcd for
(M+2H)+/z = 974.2238. Found 974.2234. IR: 1634 (C@O amide),
1531 (C@N), 973.0 (Re@O). Elemental analysis: Found: C, 35.00;
H, 4.47; N, 22.86. Calcd for [C28H35N17O9ReSꢀ + 2MeOH]: C,
34.78; H, 4.18; N, 22.98.
10. (a) Mol, J. C. Catalysis Today 1999, 51, 289–299; (b) Jiang, Y.; Hess, J.; Fox, T.;
Berke, H. J. Am. Chem. Soc. 2010, 132, 18233–18247; (c) Umeda, R.; Kaiba, K.;
Tanaka, T.; Takahashi, Y.; Nishimura, T.; Nishiyama, Y. Synlett 2010, 3089–
3091.
11. (a) Fritzberg, A. R.; Kasina, S.; Eshima, D.; Johnson, D. L. Nucl. Med. 1986, 27,
111–116; (b) Roberts, J.; Chen, B.; Curtis, L. M.; Agarwal, A.; Sanders, P. W.;
Zinn, K. R. Am. J. Physiol. Renal Physiol. 2007, 293, F1408–F1412; (c) Reyes, L.;
Navarrete, M. J. Radioanal. Nucl. Ch. 2002, 251, 245–248; (d) Itoh, K.; Matsui, Y.;
Kato, C.; Mochizuki, T.; Kitabatake, A. Ann. Nucl. Med. 1996, 10, 251–255; (e)
Taylor, A.; Eshima, D., Jr.; Fritzberg, A. R.; Christian, P. E.; Kasina, S. J. Nucl. Med.
1986, 27, 795–803; (f) Itoh, K. Ann. Nucl. Med. 2001, 15, 179–190; (g) Wang, Y.;
Liu, X.; Hnatowich, D. J. Nature Protocols 2007, 2, 972–978.
12. Pimlott, S. L.; Sutherland, A. Chem. Soc. Rev. 2011, 40, 149–162.
13. Dilworth, J. R.; Parrott, S. J. Chem. Soc. Rev. 1998, 27, 43–55.
14. (a) de Barros, A. L. B.; Cardoso, V. N.; Mota, L. G.; Leite, E. A.; Oliveira, M. C.;
Alves, R. J. Bioorg. Med. Chem. Lett. 2010, 20, 2478–2480; (b) de Barros, A. L. B.;
Cardoso, V. N.; Mota, L. G.; Alves, R. J. Bioorg. Med. Chem. Lett. 2010, 20, 315–
317; (c) de Barros, A. L. B.; Cardoso, V. N.; Mota, L. G.; Leite, E. A.; de Oliveira, M.
C.; Alves, R. J. Bioorg. Med. Chem. Lett. 2009, 19, 2497–2499.
15. Reyes, L.; Navarrete, M. J. Radioanal. Nucl. Chem. 2002, 251, 245–248.
16. Kang, L.; Wang, R. F.; Yan, P.; Liu, M.; Zhang, C. L.; Yu, M. M.; Cui, Y. G.; Xu, X. J. J.
Nucl. Med. 2010, 51, 978–986.
17. Brandau, W.; Bubeck, B.; Eisenhut, M.; Taylor, D. M. Int. J. Radiat. Appl. Instrum.
Part A. 1988, 39, 121–129.