Journal of the American Chemical Society
Communication
Stirring a solution of 3 in C6D6 under 1 atm of CO for 16 h
resulted in a color change from orange-red to pale yellow.
Analysis of the reaction mixture by 31P NMR spectroscopy
revealed the complete formation of (dtbpe)Ni(CO)2 (15). In
REFERENCES
(1) Dauth, A.; Love, J. A. Chem. Rev. 2011, 111, 2010.
■
(2) De Pasquale, R. J. J. Chem. Soc., Chem. Commun. 1973, 157.
(3) (a) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076.
(b) Beaver, M. G.; Jamison, T. F. Org. Lett. 2011, 13, 4140.
(4) Nielsen, D. K.; Doyle, A. G. Angew. Chem., Int. Ed. 2011, 50, 6056.
(5) (a) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124,
9976. (b) Mindiola, D. J.; Waterman, R.; Iluc, V. M.; Cundari, T. R.;
Hillhouse, G. L. Inorg. Chem. 2014, 53, 13227.
(6) (a) de Bruin, B.; Boerakker, M. J.; de Gelder, R.; Smits, J. M. M.;
Gal, A. W. Angew. Chem., Int. Ed. Engl. 1997, 36, 2064. (b) Dauth, A.;
Love, J. A. Angew. Chem., Int. Ed. 2010, 49, 9219. (c) Desnoyer, A. N.;
Dauth, A.; Patrick, B. O.; Love, J. A. Dalton Trans. 2014, 43, 30.
(7) (a) Tamaki, T.; Nagata, M.; Ohashi, M.; Ogoshi, S. Chem. - Eur. J.
2009, 15, 10083. (b) Hoshimoto, Y.; Yabuki, H.; Kumar, R.; Suzuki, H.;
Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2014, 136, 16752.
(8) (a) García, J. J.; Jones, W. D. Organometallics 2000, 19, 5544.
(b) García, J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002,
124, 9547.
20
contrast, reacting 3 with CO2 in CD2Cl2 yields (dtbpe)Ni-
(CO3)21 (16) as the major product (>90% yield by 31P NMR
spectroscopy) along with 12 (75% yield by 1H NMR
spectroscopy).11 If the reaction is performed in aromatic solvents
at 50 °C, orange crystals of 17 which are suitable for X-ray
diffraction analysis (Figure 3) can also be obtained from the
reaction mixture. While the insertion of a CO2 unit does result in
ring expansion, the bicyclic moiety of 3 appears to have
undergone an elimination reaction to form an alkene. This group
is clearly seen in the 1H NMR spectrum of 17.11 We have been
unable to characterize complex 17 fully, as it is formed in low
yields (<5% by 1H NMR spectroscopy) and readily decomposes.
Oxidatively induced reductive elimination has been well-
documented for first-row transition metals, including nickel.13,22
Addition of I2 to 3 results in a color change from red-orange to
dark green. Analysis of the resulting solution by EI-MS and UV−
vis spectroscopy reveals the formation of paramagnetic (dtbpe)-
(9) Reacting 1 and 2 in the presence of added COD results in a
suppressed rate of formation of 3. For an example of COD affecting
nickel catalysis, see: Jensen, K. L.; Standley, E. A.; Jamison, T. F. J. Am.
Chem. Soc. 2014, 136, 11145.
23
NiI2 (18), isolated in 93% yield. GC analysis of the crude
(10) Bach, I.; Porschke, K.-R.; Goddard, R.; Kopiske, C.; Kruger, C.;
̈
̈
mixture shows the presence of 2 in 81% yield.
Rufin
́
ska, A.; Seevogel, K. Organometallics 1996, 15, 4959.
In conclusion, we have demonstrated that ketones act as
directing groups for the oxidative addition of nickel(0) with
epoxides to give rare examples of well-defined 2-nickelaoxetanes.
DFT calculations were performed to probe the mechanism of
formation of these nickelaoxetanes, which support a bimetallic
ring-opening/closing pathway over a concerted oxidative
addition. Complex 3 was found to be susceptible to protonolysis,
oxidatively induced reductive elimination, deoxygenation, and
elimination reactions when treated with the appropriate reagents.
We are currently undertaking further mechanistic studies on the
reactions reported herein and are also exploring the possibility of
catalytic reactivity with these complexes.
(12) A similar mechanism has been proposed using platinum(II): Aye,
K.-T.; Gelmini, L.; Payne, N. C.; Vittal, J. J.; Puddephatt, P. J. J. Am.
Chem. Soc. 1990, 112, 2464.
(13) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002,
124, 2890.
(14) For related DFT studies of nickel-mediated transformations, see:
(a) Plessow, P. N.; Weigel, L.; Lindner, R.; Schafer, A.; Rominger, F.;
Limbach, M.; Hofmann, P. Organometallics 2013, 32, 3327. (b) Atesi̧ n,
T. A.; Li, T.; Lachaize, S.; Brennessel, W.; Garcia, J. J.; Jones, W. D. J. Am.
Chem. Soc. 2007, 129, 7562.
̈
(15) (a) Ho, C.-Y.; Ohmiya, H.; Jamison, T. F. Angew. Chem., Int. Ed.
2008, 47, 1893. (b) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128,
5348.
(16) Bach, I.; Goddard, R.; Kopische, C.; Seevogel, K.; Porschke, K.-P.
Organometallics 1999, 18, 10.
(17) Kawakami, T.; Shibata, I.; Baba, A. J. Org. Chem. 1996, 61, 82.
(18) Anderson, J. S.; Iluc, V. M.; Hillhouse, G. L. Inorg. Chem. 2010, 49,
10203.
̈
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(19) (a) Szuromi, E.; Wu, J.; Sharp, P. R. J. Am. Chem. Soc. 2006, 128,
12088. (b) Gable, K. P.; Phan, T. N. J. Am. Chem. Soc. 1994, 116, 833.
(20) (a) Aye, K.-T.; Ferguson, G.; Lough, A. J.; Puddephatt, R. J.
Angew. Chem., Int. Ed. Engl. 1989, 28, 767. (b) Guo, C.-H.; Song, J.-Y.;
Jia, J.-F.; Zhang, X.-M.; Wu, H.-S. Organometallics 2010, 29, 2069 See
also ref 12.
Computational coordinates and full experimental details
Crystallographic data (CIF)
AUTHOR INFORMATION
Corresponding Author
■
(21) Gonzal
metallics 2012, 31, 8200.
́ ́
ez-Sebastian, L.; Flores-Alamo, M.; García, J. J. Organo-
(22) (a) Han, R.; Hillhouse, G. L. J. Am. Chem. Soc. 1997, 119, 8135.
(b) Higgs, A. T.; Zinn, P. J.; Simmons, S. J.; Sanford, M. S.
Organometallics 2009, 28, 6142.
Notes
The authors declare no competing financial interest.
(23) Schultz, M.; Plessow, P.-N.; Rominger, F.; Weigel, L. Acta
Crystallogr., Sect. C: Cryst. Struct. Commun. 2013, 69, 1437.
ACKNOWLEDGMENTS
■
We thank the University of British Columbia, NSERC
(Discovery grant, Research Tools and Instrumentation grants)
and the Canada Foundation for Innovation for supporting this
research. A.N.D. is grateful to NSERC for a CGS-D and to the
Izaak Walton Killam foundation for a doctoral scholarship.
E.G.B. is grateful to NSERC for a CGS-M and to the
Government of Canada for a Vanier Canada graduate scholar-
ship. We thank Prof. Pierre Kennepohl, Prof. Andrei Vedernikov,
Marcus W. Drover, and Dr. Shrinwantu Pal for fruitful
discussions. This work was inspired by the scientific career of
Gregory L. Hillhouse and is dedicated to his memory.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX