JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
12 S. W. Thomas, T. M. Swager, Macromolecules 2005, 38,
CONCLUSIONS
2716–2721.
In conclusion, in this work we presented a design principle
to fabricate conjugated PPP graft copolymers with hydro-
philic PEG and polypeptide side chains by the combination
of NCA ROP and Suzuki polycondensation processes via two
routes. In the first route, the dibromo benzene functional
PEG and PLL macromonomer obtained by in situ NCA ROP
were used in a Suzuki coupling reaction using benzene
diboronic acid as the antagonist Suzuki coupling agent. In
the other route, the same reactions were conducted in a dif-
ferent sequence. First, PPP with primary amine and PEG side
groups was formed by Suzuki reaction. The NCA ROP
through the pendant amino groups yielded the desired PPP
graft copolymers. The described approach via Suzuki cou-
pling and NCA ROP provides a versatile two-stage method
applicable for obtaining conjugated polymers and polypep-
tides. In principle, it should not matter which route is
employed first as both methods essentially yield structurally
identical polymers as evidenced by spectral characterization.
Highly emissive nature of the backbone and hydrophilic and
biocharacter of the side chains make these polymers an
interesting class of bio-related emitting materials to be fur-
ther evaluated in biosensor and functional materials. Such
applications were previously demonstrated for electrochemi-
cally formed polythiophene derivatives.30,39 Further studies
in this line are now in progress.
13 S. Ho Choi, B. Kim, C. D. Frisbie, Science 2008, 320, 1482–
1486.
14 A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van
Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D.
Beljonne, R. H. Friend, Science 2012, 335, 1340–1344.
15 S. A. Jenekhe, Nature 1986, 322, 345–347.
16 N. Tessler, G. J. Denton, R. H. Friend, Nature 1996, 382,
695–697.
17 P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R.
Brown, R. H. Friend, R. W. Gymer, Nature 1992, 356, 47–49.
18 I. Musa, D. A. I. Munindrasdasa, G. A. J. Amaratunga, W.
Eccleston, Nature 1998, 395, 362–365.
19 Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature
1999, 397, 414–417.
20 M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha,
Z. V. Vardeny, Nature 2001, 409, 494–497.
21 J. H. Schon, A. Dodabalapur, Z. Bao, C. Kloc, O. Schenker,
B. Batlogg, Nature 2001, 410, 189–192.
22 G. D. Stucky, Nature 2001, 410, 885–886.
23 D. F. Perepichka, F. Rosei, Science 2009, 323, 216–217.
24 J. C. Bolinger, M. C. Traub, T. Adachi, P. F. Barbara, Science
2011, 331, 565–567.
25 C. Bardeen, Science 2011, 331, 544–545.
26 J. Kim, T. M. Swager, Nature 2001, 411, 1030–1034.
27 N. J. Turro, V. Ramamurthy, J. C. Scaiano, Photochem. Pho-
tobiol. 2012, 88, 1033–1033.
28 J. W. Hong, W. L. Hemme, G. E. Keller, M. T. Rinke, G. C.
Bazan, Adv. Mater. 2006, 18, 878–882.
ACKNOWLEDGMENTS
29 J. H. Wosnick, T. M. Swager, Curr. Opin. Chem. Biol. 2000,
4, 715–720.
The authors thank the Istanbul Technical University Research
Fund.
30 H. Akbulut, M. Yavuz, E. Guler, D. O. Demirkol, T. Endo, S.
Yamada, S. Timur, Y. Yagci, Polym. Chem. 2014, 5, 3929–3936.
31 D. G. Colak, I. Cianga, D. O. Demirkol, O. Kozgus, E. I.
Medine, S. Sakarya, P. Unak, S. Timur, Y. Yagci, J. Mater.
Chem. 2012, 22, 9293–9300.
REFERENCES AND NOTES
1 K. Lee, L. K. Povlich, J. Kim, Adv. Funct. Mater. 2007, 17,
2580–2587.
32 B. Franc¸ois, G. Widawski, M. Rawiso, B. Cesar, Synth. Met.
1995, 69, 463–466.
2 M. Ma, L. Guo, D. G. Anderson, R. Langer, Science 2013, 339,
186–189.
33 M. Chemli, A. Haj Said, J.-L. Fave, C. Barthou, M. Majdoub,
J. Appl. Polym. Sci. 2012, 125, 3913–3919.
3 H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280,
34 S. Ullrich, M. Klaus, In Photonic and Optoelectronic Poly-
mers; American Chemical Society, Washington, DC, 1997, pp
358–380.
1741–1744.
4 J. C. Scott, Science 1997, 278, 2071–2072.
€
5 E. W. H. Jager, E. Smela, O. Inganas, Science 2000, 290,
1540–1545.
35 U. Lauter, W. H. Meyer, G. Wegner, Macromolecules 1997,
30, 2092–2101.
6 J. Yu, D. Hu, P. F. Barbara, Science 2000, 289, 1327–1330.
36 J. M. Tour, J. J. S. Lamba, J. Am. Chem. Soc. 1993, 115,
4935–4936.
7 M. Gross, D. C. Muller, H.-G. Nothofer, U. Scherf, D. Neher,
C. Brauchle, K. Meerholz, Nature 2000, 405, 661–665.
37 I. S. Sim, J. W. Kim, H. J. Choi, C. A. Kim, M. S. Jhon,
Chem. Mater. 2001, 13, 1243–1247.
8 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature
1990, 347, 539–541.
38 I. Cianga, Y. Yagci, Prog. Polym. Sci. 2004, 29, 387–399.
39 M. Kesik, H. Akbulut, S. Soylemez, S. C. Cevher, G. Hzalan,
Y. Arslan Udum, T. Endo, S. Yamada, A. Crpan, Y. Yagc, L.
Toppare, Polym. Chem. 2014, 5, 6295–6306.
9 R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R.
N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L.
Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121–128.
40 R. Duncan, Nat Rev Drug Discov 2003, 2, 347–360.
10 A. Kohler, D. A. dos Santos, D. Beljonne, Z. Shuai, J. L.
Bredas, A. B. Holmes, A. Kraus, K. Mullen, R. H. Friend, Nature
1998, 392, 903–906.
41 T. Merdan, J. Kopecˇek, T. Kissel, Adv. Drug. Delivery Rev.
2002, 54, 715–758.
42 D. Luo, W. M. Saltzman, Nat. Biotechnol. 2000, 18, 33–37.
43 T. C. Holmes, Trends Biotechnol. 2002, 20, 16–21.
11 L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim, L. Grill,
Science 2009, 323, 1193–1197.
1792
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 53, 1785–1793