10.1002/chem.201700744
Chemistry - A European Journal
COMMUNICATION
ΔGsoln = 59 kJ mol-1
[1] (a) E. Block, Reactions of organosulfur compounds, Academic Press,
1978; (b) R. J. W. Cremlyn, An introduction to organosulfur chemistry,
Wiley, 1996; (c) C. B. Anfinsen, Science 1973, 181, 223-230.
[2] (a) L. I. Belenʹkiĭ, Chemistry of organosulfur compounds: general
problems, E. Horwood, 1990; (b) P. Page, Organosulfur Chemistry:
Synthetic Aspects, Academic Press, 1995; (c) E. Block, Advances in
Sulfur Chemistry, Vol. 1, Elsevier Science, 2013.
[3] (a) S. P. Black, J. K. M. Sanders, A. R. Stefankiewicz, Chem. Soc. Rev.
2014, 43, 1861-1872; (b) B. Mandal, B. Basu, RSC Adv. 2014, 4, 13854-
13881.
O
H
O
H
G3(MP2)-CC/SMD
free energies
in toluene
MeO
MeO
MeO
MeO
N
P
P
N
4c - P(V)
4c' - P(III)
3C
proton-transfer
ΔG = 75 kJ mol-1; ΔGsoln = 13 kJ mol-1
Me
proton-transfer
ΔG = 55 kJ mol-1
ΔGsoln = -8 kJ mol-1
S
H
N
N
13
N
H
OMe
H
P
OMe
OMe
observed
N
OMe
O
P
by 31P NMR
(see page S31 - SI)
O
8
[4] Y. Zhu, T. Chen, S. Li, S. Shimada, L.-B. Han, J. Am. Chem. Soc. 2016,
138, 5825-5828.
[5] (a) M. Dutartre, J. Bayardon, S. Juge, Chem. Soc. Rev. 2016, 45, 5771-
9
ΔGsoln
=
-7 kJ mol-1
ΔG = 29 kJ mol-1
ΔGsoln = -58 kJ mol-1
Me
S
S
Me or 11
5794; (b) P. J. Murphy, Organophosphorus Reagents:
A Practical
1'
N
N
Approach in Chemistry, Oxford University Press, 2004; (c) Y. Deng, X.-J.
Wei, H. Wang, Y. Sun, T. Noël, X. Wang, Angew. Chem. Int. Ed. 2016,
Early View article, DOI = 10.1002/anie.201607948.
H
Me
S
OMe
OMe
10
P
O
N
[6] (a) Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42,
6634-6654; (b) P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor,
J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652-3711.
[7] (a) S. L. Schreiber, Science 2000, 287, 1964-1969; (b) D. S. Tan, Nat.
Chem. Biol. 2005, 1, 74-84; (c) W. R. J. D. Galloway, A. Isidro-Llobet, D.
R. Spring, Nat. Commun. 2010, 1, 80.
5'
Me
S
11
N
10
8
3C
Me
termolecular
transition state
Et
N
N
S
S
S
Me
12
8 + 1'
(see SI for details)
5'
1'
[8] S. Otto, R. L. E. Furlan, J. K. M. Sanders, J. Am. Chem. Soc. 2000, 122,
12063-12064.
[also see Scheme 2b]
[9] (a) U. F. Fritze, M. von Delius, Chem. Commun. 2016, 52, 6363-6366;
(b) M. Xia, J. Cheng, Tetrahedron Lett. 2016, 57, 4702-4704.
[10] (a) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606-
5655; (b) in N-Heterocyclic Carbenes: From Laboratory Curiosities to
Efficient Synthetic Tools (Ed.: S. Diez-Gonzalez), RSC, Cambridge, UK,
2010, pp. 1- 442; (c) S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc.
Rev. 2013, 42, 4906-4917; (d) M. N. Hopkinson, C. Richter, M. Schedler,
F. Glorius, Nature 2014, 510, 485-496; (e) D. M. Flanigan, F. Romanov-
Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307-9387.
[11] (a) P. Chauhan, S. Mahajan, D. Enders, Chem. Rev. 2014, 114, 8807-
8864; (b) M. Hans, L. Delaude, J. Rodriguez, Y. Coquerel, J. Org. Chem.
2014, 79, 2758-2764; (c) J. Chen, S. Meng, L. Wang, H. Tang, Y.
Huang, Chem. Sci. 2015, 6, 4184-4189; (d) Y.-Z. Li, Y. Wang, G.-F. Du,
H.-Y. Zhang, H.-L. Yang, L. He, Asian. J. Org. Chem. 2015, 4, 327-332;
(e) Y.-T. Dong, Q. Jin, L. Zhou, J. Chen, Org. Lett. 2016, 18, 5708-5711;
(f) D. Enders, A. Saint-Dizier, M.-I. Lannou, A. Lenzen, Eur. J. Org.
Chem. 2006, 2006, 29-49; (g) S. Greenberg, D. W. Stephan, Chem. Soc.
Rev. 2008, 37, 1482-1489; (h) M. Dzięgielewski, J. Pięta, E. Kamińska,
Ł. Albrecht, Eur. J. Org. Chem. 2015, 2015, 677-702; (i) P. Arde, R.
Vijaya Anand, Org. Biomol. Chem. 2016, 14, 5550-5554.
[12] P. Dopieralski, J. Ribas-Arino, P. Anjukandi, M. Krupicka, J. Kiss, D.
Marx, Nat. Chem. 2013, 5, 685-691.
[13] J.-M. Lehn, Chem. Eur. J. 1999, 5, 2455-2463.
[14] (a) K. C. Nicolaou, R. Hughes, J. A. Pfefferkorn, S. Barluenga, A. J.
Roecker, Chem. Eur. J. 2001, 7, 4280-4295; (b) O. Ramström, J.-M.
Lehn, ChemBioChem 2000, 1, 41-48.
[15] (a) R. Caraballo, M. Rahm, P. Vongvilai, T. Brinck, O. Ramstrom, Chem.
Commun. 2008, 6603-6605; (b) R. Caraballo, M. Sakulsombat, O.
Ramstrom, Chem. Commun. 2010, 46, 8469-8471.
Scheme 3. Proposed mechanism for the P(O)-S coupling reactions
addition of a catalytic amount of water (entry 9) or using a more
polar solvent (entry 10), known to enhance the formation of P(III)
tautomer,[28] both led to lower reaction efficiency.
In conclusion, we have developed novel NHC-catalyzed
methods to efficiently promote the disulfide metathesis as well
as the phosphite-disulfide coupling reactions under very mild
conditions and short reaction times. These metal-free protocols
were operationally simple but computational studies suggest that
they might be mechanistically more complex with interesting
activation modes. The computational studies provide
mechanistic insights into how the nucleophilicity/basicity of
NHCs can be exploited to enhance the two aforementioned
synthetic procedures. These reactions could serve as versatile
tools to rapidly generate diverse molecular libraries for
applications in synthetic and medicinal chemistry. This work also
opens up new opportunities in NHC-mediated chemistry of
organosulfur and organophosphorus compounds. Studies to
expand the scope of these methodologies in stereoselective
synthesis of bioactive compounds are on-going and will be
reported in due course.
[16] (a) A. M. Belenguer, T. Friscic, G. M. Day, J. K. M. Sanders, Chem. Sci.
2011, 2, 696-700; (b) A. M. Belenguer, G. I. Lampronti, D. J. Wales, J. K.
M. Sanders, J. Am. Chem. Soc. 2014, 136, 16156-16166.
[17] H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara, Chem.
Commun. 2010, 46, 1150-1152.
[18] R. Singh, G. M. Whitesides, J. Am. Chem. Soc. 1990, 112, 1190-1197.
[19] A. Levens, F. An, M. Breugst, H. Mayr, D. W. Lupton, Org. Lett. 2016,
18, 3566-3569.
Acknowledgements
[20] See the Supporting Information for more details.
[21] J. Ho, M. Z. Ertem, J. Phys. Chem. B 2016, 120, 1319-1329.
[22] M06-2X/6-31+G(d) SMD solvation free energy of NHC 3C is -63 kJ mol-1
in MeCN, whereas that of ethylthiolate is -254 kJ mol-1.
The authors thank the Australian Research Council (grant
DE150100517) and the UNSW Faculty of Science for financial
support. JH acknowledges the Singapore Agency for Science,
Technology and Research for support, and the NCI for generous
allocation of computing time.
[23] Y.-C. Liu, C.-F. Lee, Green Chem. 2014, 16, 357-364.
[24] L. He, Z.-H. Cai, J.-X. Pian, G.-F. Du, Scientific World J. 2013, 2013, 6.
[25] (a) E. M. Higgins, J. A. Sherwood, A. G. Lindsay, J. Armstrong, R. S.
Massey, R. W. Alder, A. C. O’donoghue, Chem. Commun. 2011, 47,
1559-1561; (b) R. S. Massey, C. J. Collett, A. G. Lindsay, A. D. Smith, A.
C. O’Donoghue, J. Am. Chem. Soc. 2012, 134, 20421-20432.
[26] R. W. Alder, P. R. Allen, S. J. Williams, J. Chem. Soc., Chem. Commun.
1995, 1267-1268.
[27] F. G. Bordwell, D. L. Hughes, J. Org. Chem. 1982, 47, 3224-3232.
[28] M. Baidya, H. Mayr, Chem. Commun. 2008, 1792-1794.
[29] B. G. Janesko, H. C. Fisher, M. J. Bridle, J.-L. Montchamp, J. Org.
Chem. 2015, 80, 10025-10032.
Keywords: N-heterocyclic carbene • organocatalysis • disulfide •
phosphorylation • high-level ab initio calculations
[30] J. P. Guthrie, Can. J. Chem. 1979, 57, 236-239.
This article is protected by copyright. All rights reserved.