Organic Letters
Letter
J.; Gagne,
́
M. R. Org. Lett. 2009, 11, 879. (g) Melzig, L.; Gavryushin,
17108. (d) Hatanaka, Y.; Hiyama, T. J. Am. Chem. Soc. 1990, 112,
7793.
A.; Knochel, P. Org. Lett. 2007, 9, 5529.
(4) (a) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem.
Soc. 2004, 126, 3686. (b) Hatakeyama, T.; Kondo, Y.; Fujiwara, Y.;
Takaya, H.; Ito, S.; Nakamura, E.; Nakamura, M. Chem. Commun.
2009, 1216. (c) Kawamura, S.; Kawabata, T.; Ishizuka, K.; Nakamura,
M. Chem. Commun. 2012, 48, 9376. (d) Steib, A. K.; Thaler, T.;
Komeyama, K.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50,
3303. (e) Bensoussan, C.; Rival, N.; Hanquet, G.; Colobert, F.;
Reymond, S.; Cossy, J. Tetrahedron 2013, 69, 7759.
(23) Munro-Leighton, C.; Adduci, L. L.; Becker, J. J.; Gagne,
Organometallics 2011, 30, 2646.
(24) (a) Still, J. K. Angew. Chem., Int. Ed. 1986, 25, 508. (b) Labadie,
J. W.; Still, J. K. J. Am. Chem. Soc. 1983, 105, 6129. (c) Milstein, D.;
Still, J. K. J. Am. Chem. Soc. 1979, 101, 4981. (d) Krizkova, P. M.;
Hammerschmidt, F. Eur. J. Org. Chem. 2013, 5143.
́
M. R.
(5) (a) Ohmiya, H.; Tsuji, T.; Yorimitsu, H.; Oshima, K. Chem.
Eur. J. 2004, 10, 5640. (b) Ohmiya, H.; Yorimitsu, H.; Oshima, K. J.
Am. Chem. Soc. 2006, 128, 1886. (c) Nicolas, L.; Angibaud, P.;
Stanfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew.
Chem., Int. Ed. 2012, 51, 11101.
(6) Other metal catalyzed conditions: (a) Yasuda, S.; Yorimitsu, H.;
Oshima, K. Bull. Chem. Soc. Jpn. 2008, 81, 287. (b) Someya, H.;
Yorimitsu, H.; Oshima, K. Tetrahedron 2010, 66, 5993. (c) Pastine, S.
J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220.
(7) Enantioconvergent cross-couplings: (a) Cordier, C. J.; Lundgren,
R. J.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 10946. (b) Lu, Z.; Wilsily,
A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154.
(8) (a) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. Org.
React. 2001, 58, 417. (b) Knochel, P.; Leuser, H.; Gong, L. -Z.;
Perrone, S.; Kneisel, F. F. In Handbook of Functionalized Organo-
metallics, Knochel, P., Eds.; Wiley-VCH: Weinheim, 2005; pp 215−
333.
(9) Knoess, H. P.; Furlong, M. T.; Rozema, M. J.; Knochel, P. J. Org.
Chem. 1991, 56, 5974.
(10) These cross-couplings became much slower under our
conditions if an aryl bromide is used (for example, 4-bromoanisole
instead of 4-iodoanisole).
(11) (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
6338. (b) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2004, 43, 1871. (c) Milne, J. E.; Buchwald, S. L.
J. Am. Chem. Soc. 2004, 126, 13028.
(12) Usually higher reaction temperatures led to lower diaster-
eoselectivity. However, in some cases (Table 2, entries 8, 9, 13) the
performance of the coupling reactions at −10 °C improved the yields
without significant loss of diastereoselectivity compared to −25 °C.
(13) Gavryushin, A.; Kofink, C.; Manolikakes, G.; Knochel, P. Org.
Lett. 2005, 7, 4871.
(14) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P.
Angew. Chem., Int. Ed. 2006, 45, 6040.
(15) Homocoupling byproducts (biphenyls) were also produced in
these cross-couplings in small amounts (6−10% NMR yield).
(16) The A value of a terminal alkyne (A = 0.41) is smaller than that
of other substituents such as CO2Me (A = 1.31). Jensen, F. R.;
Bushweller, C. H.; Beck, B. H. J. Am. Chem. Soc. 1969, 91, 344.
(17) (a) Majid, T. N.; Yeh, M. C. P.; Knochel, P. Tetrahedron Lett.
1989, 30, 5069. (b) Boudier, A.; Darcel, C.; Flachsmann, F.; Micouin,
L.; Oestreich, M.; Knochel, P. Chem.Eur. J. 2000, 6, 2748. (c) Hupe,
E.; Knochel, P. Org. Lett. 2001, 3, 127.
(18) Seel, S. Stereoselective Preparation and Stereochemical
Behaviour of Organozinc and Organolithium Reagents. Ph.D. Thesis,
Ludwig-Maximilian-Universitat Munchen, 2012.
̈
̈
(19) See Supporting Information.
(20) We have found no evidence that cis- and trans-cyclohexylzinc
reagents isomerize under our cross-coupling conditions.
(21) (a) Imao, D.; Glasspoole, B. W.; Laberge, V. S.; Crudden, C. M.
J. Am. Chem. Soc. 2009, 131, 5024. (b) Lee, J. C. H.; McDonald, R.;
Hall, D. G. Nat. Chem. 2011, 3, 894. (c) Falck, J. R.; Patel, P. K.;
Bandyopadhyay, A. J. Am. Chem. Soc. 2007, 129, 790. (d) Li, L.; Wang,
C.-Y.; Huang, R.; Biscoe, M. R. Nat. Chem. 2013, 5, 607. (e) Ridgway,
B. H.; Woerpel, K. A. J. Org. Chem. 1998, 63, 458.
(22) SE2 mechanism: (a) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc.
2004, 126, 15666. (b) Ohmura, T.; Awano, T.; Suginome, M. J. Am.
Chem. Soc. 2010, 132, 13191. (c) Sandrock, D. L.; Jean-Ger
́
ard, L.;
Chen, C.; Dreher, S. D.; Molander, G. A. J. Am. Chem. Soc. 2010, 132,
927
dx.doi.org/10.1021/ol403673e | Org. Lett. 2014, 16, 924−927