Organic Letters
Letter
ASSOCIATED CONTENT
* Supporting Information
■
S
General experimental procedure and characterization of all
compounds are provided. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
Notes
in the palladium-catalyzed cycloaddition reaction.16 When the
same reaction was conducted without CO, the reaction became
slow and the yield of 4-methylene-hexahydropentalene did not
improve. The presence of CO is beneficial for the reaction,
even though the reaction to form 4 is not related to the
carbonylation reaction.12,17
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Research Foundation
of Korea (NRF) (2007-0093864 and 2014-011165). S.K.
thanks the Brain Korea 21 Plus Fellowships.
On the basis of the related previous studies,18,19 a plausible
reaction mechanism is outlined in Scheme 1. Alkylidenecyclo-
REFERENCES
■
Scheme 1. Proposed Reaction Mechanism
(1) (a) Schore, N. E. Chem. Rev. 1988, 88, 11081−1119. (b) Lautens,
M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49−92. (c) Fruhauf, H.-
̈
́
W. Chem. Rev. 1997, 97, 523−596. (d) Varela, J. A.; Saa, C. Chem. Rev.
2003, 103, 3787−3802. (e) Amblard, F.; Cho, J. H.; Schinazi, R. F.
Chem. Rev. 2009, 109, 4207−4220. (f) Padwa, A. Chem. Soc. Rev. 2009,
38, 3072−3081. (g) Shu, X.-Z.; Shu, D.; Schienebeck, C. M.; Tang, W.
́
Chem. Soc. Rev. 2012, 41, 7698−7711. (h) Domínguez, G.; Perez-
Castells, J. Chem. Soc. Rev. 2011, 40, 3430−3444. (i) Chen, G.-Q.; Shi,
M. Chem. Commun. 2013, 49, 698. (j) Gulías, M.; Lopez, F.;
Mascarenas, J. L. Pure Appl. Chem. 2011, 83, 495−506.
̃
(2) (a) Delgado, A.; Rodriguez, J. R.; Castedo, L.; Mascarenas, J. L. J.
̃
Am. Chem. Soc. 2003, 125, 9282−9283. (b) Duran, J.; Gulísa, M.;
Casteso, L.; Mascarenas, J. L. Org. Lett. 2005, 7, 5693−5696. (c) Yao,
̃
B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640. (d) Bhargava,
G.; Trillo, B.; Araya, M.; Lopez, F.; Castedo, L.; Mascarenas, J. L.
̃
Chem. Commun. 2010, 46, 270.
(3) (a) Delgado, A.; Rodriguez, J. R.; Castedo, L.; Mascarenas, J. L. J.
̃
Am. Chem. Soc. 2003, 125, 9282−9283. (b) Duran, J.; Gulísa, M.;
Casteso, L.; Mascarenas, J. L. Org. Lett. 2005, 7, 5693−5696.
̃
(4) Zhang, D.-H.; Shi, M. Tetrahedron Lett. 2012, 53, 487−490.
(5) Mazumder, S.; Shang, D.; Negru, D. E.; Paik, M.-H.; Evans, P. A.
J. Am. Chem. Soc. 2012, 134, 20569−20572.
(6) (a) Koga, Y.; Narasaka, K. Chem. Lett. 1999, 705−706.
(b) Fukuyama, T.; Higashibeppu, Y.; Yamaura, R.; Ryu, I. Org. Lett.
2007, 9, 587−589.
propane (1) in the presence of a rhodium catalyst [Rh]
undergoes a reaction to form a rhodium(I) intermediate (A),
followed by ring opening of the cyclopropane moiety and the
oxidative addition to the rhodium center to form B. In the
formation of intermediate B, the rhodium center was inserted
into the distal bond of the cyclopropane ring. A reductive
cyclization followed by demetalation leads to compound 4.
Coordination of CO to B leads to the formation of
intermediate C. Insertion of CO, reductive elimination, and a
1,3-hydride shift lead to intermediate D. Subsequent isomer-
ization of D affords the final product 2.
(7) Li, C.; Zhang, H.; Feng, J.; Zhang, Y.; Wang, J. Org. Lett. 2010,
12, 3082−3085.
(8) Chen, G.-Q.; Shi, M. Chem. Commun. 2013, 49, 698−700.
(9) (a) Zhang, D.-H.; Wei, Y.; Shi, M. Chem.Eur. J. 2012, 18,
7026−7029. (b) Saya, S.; Bhargava, G.; Navarro, M. A.; Gulías, M.;
́ ̌
Lopez, F.; Fernandez, I.; Castedo, L.; Mascarenas, J. L. Angew. Chem.,
Int. Ed. 2010, 49, 9886−9890. (c) Sethofer, S. G.; Staben, S. T.; Hung,
O. Y.; Toste, F. D. Org. Lett. 2008, 10, 4315−4318.
(10) Hara, H.; Hirano, M.; Tanaka, K. Org. Lett. 2009, 11, 1337−
1340.
(11) Stolle, A.; Becker, H.; Salaun, J.; de Meijere, A. Tetrahedron Lett.
̈
1994, 35, 3517−3520.
In summary, we developed a novel rhodium-catalyzed
carbonylative [3 + 2 + 1] cycloaddition of alkylidenecyclo-
propanes under mild reaction conditions, for the synthesis of
phenols. A variety of tethers (nitrogen-, oxygen-, and gem-
diester) could be employed to construct hetero- and
carbobicyclic skeletons. The tether length allows the formation
of 5,6- and 6,6-bicyclic systems. The products possess a phenol
ring bearing a vinyl or a cyclopropyl substituent, which will
provide access for further functionalization and operation.20
(12) Kim, S. Y.; Chung, Y. K. J. Org. Chem. 2010, 75, 1281−1284.
(13) For cyclization of 1,7-enynes, see: (a) Rao, W.; Sally, K.; Ming,
J.; Chan, P.; Wai, H. J. Org. Chem. 2013, 78, 3183−3195. (b) Pardo-
Rodriguez, V.; Bunuel, E.; Collado-Sanz, D.; Cardenas, D. J. Chem.
Commun. 2012, 48, 10517−10519. (c) Toullec, P. Y.; Michelet, V.
Top. Curr. Chem. 2011, 302, 31−80. (d) Wittstein, K.; Kumar, K.;
Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 9076−9080.
(e) Lanfranchi, D. A.; Bour, C.; Boff, B.; Hanquet, G. Eur. J. Org.
Chem. 2010, 5232−5247. (f) Ez-Zoubir, M.; Le Boucher d’Herouville,
F.; Brown, J. A.; Ratovelomanana-Vidal, V.; Michelet, V. Chem.
C
dx.doi.org/10.1021/ol5015224 | Org. Lett. XXXX, XXX, XXX−XXX