(10 mL) was heated to reflux overnight. The solvent was removed
under reduced pressure at room temperature and the residue was
purified through column chromatography over silica gel with
Et3N/CH2Cl2/petroleum ether (60–90 ꢀC) (0.2 : 1 : 3, v : v : v) as
References
1 (a) Y. Nagai, L. D. Unsworth, S. Koutsopoulos and S. Zhang, J.
Controlled Release, 2006, 115, 18; (b) C. Li, J. Madsen, S. P. Armes
and A. L. Lewis, Angew. Chem., Int. Ed., 2006, 45, 3510; (c)
G. P. Andrews, L. Donnelly, D. S. Jones, R. M. Curran,
R. J. Morrow, A. D. Woolfson and R. K. Malcolm,
Biomacromolecules, 2009, 10, 2427.
2 (a) B. Xu, Langmuir, 2009, 25, 8375; (b) G. Liang, Z. Yang, R. Zhang,
L. Li, Y. Fan, Y. Kuang, Y. Gao, T. Wang, W. W. Lu and B. Xu,
Langmuir, 2009, 25, 8419.
3 (a) T. Ishi-I and S. Shinkai, Top. Curr. Chem., 2005, 258, 119; (b)
T. Kato, N. Mizoshita, M. Moriyama and T. Kitamura, Top. Curr.
Chem., 2005, 256, 219.
4 (a) K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata,
T. Komori, F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc.,
1994, 116, 6664; (b) S. Yagai, T. Nakajima, K. Kishikawa,
S. Kohmoto, T. Karatsu and A. Kitamura, J. Am. Chem. Soc.,
2005, 127, 11134; (c) T. Suzuki, S. Shinkai and K. Sada, Adv.
Mater., 2006, 18, 1043.
1
eluant to afford 1 as a yellow glassy solid: 0.487 g (30%). H
NMR (300 MHz, CDCl3, ppm): d 8.52 (s, 1H), 7.96 (d, J ¼ 8.4
Hz, 2H), 7.88 (d, J ¼ 8.7 Hz, 2H), 6.85 (t, J ¼ 5.6 Hz, 1H), 6.61 (t,
J ¼ 5.4 Hz, 1H), 6.54 (s, 2H), 6.52 (s, 2H), 4.57 (d, J ¼ 5.7 Hz,
2H), 4.51 (d, J ¼ 4.5 Hz, 2H), 4.03–3.84 (m, 12H), 1.90–1.62 (m,
12H), 1.58–1.10 (m, 96H), 0.880 (t, J ¼ 7.2 Hz, 9H), 0.875 (t, J ¼
6.9 Hz, 9H). 13C NMR (100 MHz, CDCl3, ppm): 168.0, 166.4,
158.3, 153.3, 153.2, 143.7 (JC–F ¼ 245 Hz), 139.1 (JC–F ¼ 250
Hz), 138.3, 137.3, 137.1, 132.7, 132.3, 131.7, 129.7, 129.3, 127.7,
127.5, 112.3, 106.2, 105.7, 73.5, 73.4, 69.0, 44.7, 44.2, 31.9, 30.3,
30.3, 29.7, 29.7, 29.6, 29.4, 29.4, 29.3, 26.1, 26.1, 22.7, 14.1. 19F
NMR (282 MHz, CDCl3, ppm): d ꢂ64.3, ꢂ74.4. MS (ESI, m/z):
Calcd: 1625.3 (M+), Found: 1699.3 (M + 74) +. Anal. Calcd. for
ꢀ
5 (a) J. Eastoe, M. Sanchez-Dominguez, P. Wyatt and R. K. Heenan,
Chem. Commun., 2004, 2608; (b) Y. Ji, G.-C. Kuang, X.-R. Jia,
E.-Q. Chen, B.-B. Wang, W.-S. Li, Y. Wei and J. Lei, Chem.
Commun., 2007, 4233; (c) J. H. Kim, M. Seo, Y. J. Kim and
S. Y. Kim, Langmuir, 2009, 25, 1761.
C101H165F4N3O8: C, 74.63; H, 10.23; N, 2.59. Found: C, 74.30;
H, 10.32; N, 2.70.
6 (a) C. Geiger, M. Stanescu, L. Chen and D. G. Whitten, Langmuir,
1999, 15, 2241; (b) R. Wang, C. Geiger, L. Chen, B. Swanson and
D. G. Whitten, J. Am. Chem. Soc., 2000, 122, 2399.
Scanning electron microscopy (SEM)
7 (a) J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch and
B. L. Feringa, Science, 2004, 304, 278; (b) C. Wang, D. Zhang,
J. Xiang and D. Zhu, Langmuir, 2007, 23, 9195; (c) H. Yang, T. Yi,
Z. Zhou, Y. Zhou, J. Wu, M. Xu, F. Li and C. Huang, Langmuir,
2007, 23, 8224; (d) L. Zhu, X. Ma, F. Ji, Q. Wang and H. Tian,
Chem.–Eur. J., 2007, 13, 9216; (e) A. Ajayaghosh, V. K. Praveen,
S. Srinivasan and R. Varghese, Adv. Mater., 2007, 19, 411.
SEM measurements were carried out by a field emission scanning
electron microscope (FEEM, LEO 1530 VP) operated at an
accelerating voltage of 1.0 kV. All samples were applied to
a stainless silica wafer and allowed to dry under reduced
pressure.
ꢁ
8 (a) J. J. D. de Jong, P. R. Hania, A. Pugzlys, L. N. Lucas, M. de Loos,
R. M. Kellogg, B. L. Feringa, K. Duppen and J. H. van Esch, Angew.
Chem., Int. Ed., 2005, 44, 2373; (b) Y.-L. Zhao and J. F. Stoddart,
Langmuir, 2009, 25, 8442.
Atomic force microscopy (AFM)
AFM measurements were conducted in tapping mode on freshly
stripped mica surfaces by DI Nanoscope IIIa in air. Tap300Al
tips (Budget Sensors) with a force constant of 40 N mꢂ1 and
a resonance frequency of 300 kHz were used.
9 (a) S. Wang, W. Shen, Y. Feng and H. Tian, Chem. Commun., 2006,
1497; (b) C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, Y. Huang,
R. Zhao and D. Zhu, J. Am. Chem. Soc., 2010, 132, 3092.
10 (a) C. Wang, D. Zhang and D. Zhu, Langmuir, 2007, 23, 1478; (b)
A. Ghosh and J. Dey, Langmuir, 2009, 25, 8466; (c) M. B. Dowling,
J.-H. Lee and S. R. Raghavan, Langmuir, 2009, 25, 8519; (d)
T. Kar, S. Debnath, D. Das, A. Shome and P. K. Das, Langmuir,
2009, 25, 8639.
Rheological measurements
11 (a) T. Naota and H. Koori, J. Am. Chem. Soc., 2005, 127, 9324; (b)
J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu, Y. Zhou, H. Zhang,
J. Han, F. Li and C. Huang, Angew. Chem., Int. Ed., 2008, 47, 1063.
12 (a) C. Wang, D. Zhang and D. Zhu, J. Am. Chem. Soc., 2005, 127,
16372; (b) S.-I. Kawano, N. Fujita and S. Shinkai, J. Am. Chem.
Soc., 2004, 126, 8592; (c) S.-I. Kawano, N. Fujita and S. Shinkai,
Chem.–Eur. J., 2005, 11, 4735; (d) Y.-L. Zhao, I. Aprahamian,
A. Trabolsi, N. Erina and J. F. Stoddart, J. Am. Chem. Soc., 2008,
130, 6348.
Rheological measurement were carried out by using Physica
MCR 301 instrument with a parallel plate (diameter ¼ 25 mm) at
20 ꢀC.
Gelation test
A typical procedure for qualitative gelation testing was as
following: in a test tube (diameter ¼ 1 cm), imine 1 was mixed
with appropriate amounts of solvent and the mixture was heated
until tꢀhe solid dissolved. The resulting clear solution was cooled
to 20 C and annealed for about 1 h at this temperature. When
the test tube could be inverted without change of shape of its
content, it was indentified as a gel.
13 K. Sugiyasu, N. Fujita and S. Shinkai, Angew. Chem., Int. Ed., 2004,
43, 1229.
14 (a) T. Akutagawa, K. Kakiuchi, T. Hasegawa, S.-I. Noro,
T. Nakamura, H. Hasegawa, S. Mashiko and J. Becher, Angew.
Chem., Int. Ed., 2005, 44, 7283; (b) T. Kitahara, M. Shirakawa,
S.-I. Kawano, U. Beginn, N. Fujita and S. Shinkai, J. Am. Chem.
Soc., 2005, 127, 14980; (c) T. Kitamura, S. Nakaso, N. Mizoshita,
Y. Tochigi, T. Shimomura, M. Moriyama, K. Ito and T. Kato, J. Am.
ꢀ
Chem. Soc., 2005, 127, 14769; (d) J. Puigmartı-Luis, V. Laukhin,
A. P. del Pino, J. Vidal-Gancedo, C. Rovira, E. Laukhina and
ꢀ
Acknowledgements
D. B. Amabilino, Angew. Chem., Int. Ed., 2007, 46, 238.
15 (a) F. S. Schoonbeek, J. H. van Esch, B. Wegewijs, D. B. A. Rep,
M. P. de Haas, T. M. Klapwijk, R. M. Kellogg and B. L. Feringa,
Angew. Chem., Int. Ed., 1999, 38, 1393; (b) B. W. Messmore,
J. F. Hulvat, E. D. Sone and S. I. Stupp, J. Am. Chem. Soc., 2004,
126, 14452; (c) S.-I. Kawano, N. Fujita and S. Shinkai, Chem.–Eur.
J., 2005, 11, 4735.
This research was financially supported by the National Basic
Research Program (2007CB808000) from the Ministry of
Science and Technology and National Natural Science Foun-
dation of China (No. 21074004 & 50873002). The authors are
grateful to Prof. Dehai Liang for his help on rheological
measurements.
16 H. Komatsu, S. Matsumoto, S.-I. Tamaru, K. Kaneko, M. Ikeda and
I. Hamachi, J. Am. Chem. Soc., 2009, 131, 5580.
This journal is ª The Royal Society of Chemistry 2012
Soft Matter, 2012, 8, 5486–5492 | 5491