10.1002/chem.201901047
Chemistry - A European Journal
FULL PAPER
[8]
[9]
a) A. Gorman, J. Killoran, C. O'Shea, T. Kenna, W. M. Gallagher, D. F.
O'Shea, J. Am. Chem. Soc. 2004, 126, 10619-10631; b) S. Kim, T. Y.
Ohulchanskyy, D. Bharali, Y. Chen, R. K. Pandey, P. N. Prasad, J.
Phys. Chem. C 2009, 113, 12641-12644; c) M. R. Detty, P. B. Merkel, J.
Am. Chem. Soc. 1990, 112, 3845-3855; d) I. V. Khudyakov, Y. A.
Serebrennikov, N. J. Turro Chem. Rev. 1993, 93, 537-570.
Conclusions
In this article, we showed that coordination of a lanthanide heavy
atom to of organic ligands could be used to dramatically improve
its singlet oxygen photosensitization efficiency, when no energy
transfer to the lanthanide is thermodynamically allowed (Ln =
Gd). Such complexes combine high TPA cross-section,
alongside with excellent singlet oxygen generation properties in
the range of the best two-photon sensitizer reported to date.[30]
Theoretical calculations helped rationalizing the mechanism
associated to this very large ISC efficiency. It was evidenced
that (i) ISC preferentially occurs from the S1 to the T2 rather than
the T1; (ii) it requires a lowering in the ligand symmetry, through
distortion of the alkyne bridge. On a more applicative point of
view, we showed that stabilization of pluronic nano-suspension
of the photosensitizer in physiological medium was possible, and
that the resulting suspension was effective in generating singlet
oxygen in physiological medium upon photo-irradiation. Finally
incubation of this suspension in cell cultures resulted in efficient
internalization of the PS within the cell, and the incubated PS
could be excited by two-photon activation to efficiently mediate
cell death.
a) A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K.
Burgess, Chem. Soc. Rev. 2013, 42, 77-88; b) C. Tang, P. Hu, E. Ma,
M. Huang, Q. Zheng, Dyes Pigme. 2015, 117, 7-15; c) Y. Yang, Q. Guo,
H. Chen, Z. Zhou, Z. Guo, Z. Shen, Chem. Comm. 2013, 49, 3940-
3942; d) C. Cepraga, S. Marotte, E. Ben Daoud, A. Favier, P.-H. Lanoë,
C. Monnereau, P. Baldeck, C. Andraud, J. Marvel, M.-T. Charreyre, Y.
Leverrier, Biomacromolecules 2017, 18, 4022-4033; e) C. Cepraga, A.
Favier, F. Lerouge, P. Alcouffe, C. Chamignon, P.-H. Lanoe, C.
Monnereau, S. Marotte, E. Ben Daoud, J. Marvel, Y. Leverrier, C.
Andraud, S. Parola, M.-T. Charreyre, Pol. Chem. 2016, 7, 6812-6825.
[10] a) M. Stephenson, C. Reichardt, M. Pinto, M. Wächtler, T. Sainuddin, G.
Shi, H. Yin, S. Monro, E. Sampson, B. Dietzek, S. A. McFarland, J.
Phys. Chem. A 2014, 118, 10507-10521; b) D. Maggioni, M. Galli, L.
D’Alfonso, D. Inverso, M. V. Dozzi, L. Sironi, M. Iannacone, M. Collini,
P. Ferruti, E. Ranucci, G. D’Alfonso, Inorg. Chem. 2015, 54, 544-553;
c) F. Xue, Y. Lu, Z. Zhou, M. Shi, Y. Yan, H. Yang, S. Yang, Organomet.
2015, 34, 73-77; d) L. K. McKenzie, I. V. Sazanovich, E. Baggaley, M.
Bonneau, V. Guerchais, J. A. G. Williams, J. A. Weinstein, H. E. Bryant,
Chem. Eur. J. 2017, 23, 234-238; e) H. Huang, B. Yu, P. Zhang, J.
Huang, Y. Chen, G. Gasser, L. Ji, H. Chao, Angew. Chem. Int. Ed.
2015, 127, 14255-14258; f) C. Mari, V. Pierroz, S. Ferrari, G. Gasser,
Chem. Sci. 2015, 6, 2660-2686; g) E. M. Boreham, L. Jones, A. N.
Swinburne, M. Blanchard-Desce, V. Hugues, C. Terryn, F. Miomandre,
G. Lemercier, L. S. Natrajan, Dalton Trans. 2015, 44, 16127-16135; h)
N. Z. Knezevic, V. Stojanovic, A. Chaix, E. Bouffard, K. E. Cheikh, A.
Morere, M. Maynadier, G. Lemercier, M. Garcia, M. Gary-Bobo, J.-O.
Durand, F. Cunin, J. Mat. Chem. B 2016, 4, 1337-1342.
Finally, this work opens new potentialities for theranostic
applications, for the design of gadolinium complexes as a dual
MRI and 2P-PDT probe (after modifications of the ligand
structure). This approach is currently under investigation in our
groups.
Acknowledgements
[11] a) G.-L. Law, R. Pal, L. O. Palsson, D. Parker, K.-L. Wong, Chem.
Comm. 2009, 7321-7323; b) T. Zhang, R. Lan, C-F. Chan, G.-L. Law,
W.-K. Wong, K.-L. Wong Proc. Nat. Ac. Sci. 2014, 111, E5492-E549;
.c) X.-S. Ke, Y. Ning, J. Tang, J.-Y. Hu, H.-Y. Yin, G.-X. Wang, Z.-S.
Yang, J. Jie, K. Liu, Z.-S. Meng, Z. Zhang, H. Su, C. Shu, J.-L. Zhang
Chem. Eur. J. 2016, 22, 9676 – 9686; d) T. D. Mody, L. Fu, J. L.
Sessler, Progress Inorg. Chem. 2001, 49, 551-598; e) J. L. Sessler, G.
Hemmi, T. D. Mody, T. Murai, A. Burrell, S. W. Young, Acc. Chem. Res.
1994, 27, 43-50.
Author thanks Dr. Y. Bretonnière and Dr. M. Rémond for their
help in the preparation of Pluronic nanoparticles. The authors
are grateful to ANR (SADAM ANR-16-CE07-0015-01) for
financial support. IAB platform was co-funded thanks to grants of
‘‘Association pour la Recherche sur le Cancer’’ (ARC, Villejuif,
France),‘‘Ligue Contre le Cancer’’ (LCC Ise`re/Arde`che) and the
CPER program. The authors thank C. Chamot and the PLATIM
Imaging and Microscopy platform for the access to the
femtosecond laser system. We thank MRI (Montpellier RIO
Imaging platform) for confocal imaging facilities. Dr. T. Le
Bahers thanks the ‘‘Pole Scientifique de Modélisation
Numérique (PSMN)“ for its computational resources.
[12] a) D. Parker, Coord. Chem. Rev. 2000, 205, 109-130; b) R. Hueting, M.
Tropiano, S. Faulkner, RSC Advances 2014, 4, 44162-44165; c) M.
Soulié, F. Latzko, E. Bourrier, V. Placide, S. J. Butler, R. Pal, J. W.
Walton, P. L. Baldeck, B. Le Guennic, C. Andraud, J. M. Zwier, L.
Lamarque, D. Parker, O. Maury Chem. Eur. J. 2014, 20, 8636 – 8646;
d) T. J. Sorensen, A. M. Kenwright, S. Faulkner, Chem. Sci. 2015, 6,
2054-2059; e) A. Watkis, R. Hueting, T. J. Sorensen, M. Tropiano, S.
Faulkner, Chem. Commun. 2015, 51, 15633-15636.
[13] J. Lehr, M. Tropiano, P. D. Beer, S. Faulkner, J. J. Davis, Chem. Comm.
2015, 51, 15944-15947
Keywords: Gadolinium • Photodynamic therapy • Intersystem
crossing• Two-photon microscopy • Lanthanide
[14] a) R. Arppe, N. Kofod, A. K. R. Junker, L. G. Nielsen, E. Dallerba, T. J.
Sorensen, Eur. J. Inorg. Chem. 2017, 5246-5253; b) M. Galland, F.
Riobé, J. Ouyang, N. Saleh, F. Pointillart, V. Dorcet, B. Le Guennic, O.
Cador, J. Crassous, C. Andraud, C. Monnereau, O. Maury Eur. J. Inorg.
Chem 2019, 118-125.
[1]
[2]
H. Von Tappenier, Muench Med Wochenschr 1903, 47, 2042-2044.
a) C. S. Foote, Science 1968, 162, 963-970; b) C. S. Foote, Acc. Chem.
Res. 1968, 1, 104-110.
[3]
a) T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel,
M. Korbelik, J. Moan, Q. Peng, JNCI: Journal of the National Cancer
Institute 1998, 90, 889-905; b) D. E. J. G. J. Dolmans, D. Fukumura, R.
K. Jain, Nature Rev. Canc. 2003, 3, 380; c) S. B. Brown, E. A. Brown, I.
Walker, The Lancet Oncology 2004, 5, 497-508.
[15] a) Y. I. Park, H. M. Kim, J. H. Kim, K. C. Moon, B. Yoo, K. T. Lee, N.
Lee, Y. Choi, W. Park, D. Ling, K. Na, W. K. Moon, S. H. Choi, H. S.
Park, S.-Y. Yoon, Y. D. Suh, S. H. Lee, T. Hyeon, Adv. Mater. 2012, 24,
5755-5761; b) J. Luo, L.-F. Chen, P. Hu, Z.-N. Chen, Inorg. Chem.
2014, 53, 4184-4191; c) Z. Zhu, X. Wang, T. Li, S. Aime, P. J. Sadler, Z.
Guo, Angew. Chem. Int. Ed. 2014, 53, 13225-13228; d) C. Truillet, F.
Lux, J. Moreau, M. Four, L. Sancey, S. Chevreux, G. Boeuf, P. Perriat,
C. Frochot, R. Antoine, P. Dugourd, C. Portefaix, C. Hoeffel, M.
Barberi-Heyob, C. Terryn, L. van Gulick, G. Lemercier, O. Tillement
Dalton Trans. 2013, 42, 12410-12420.
[4]
[5]
a) R. Bonnett, Chem. Soc. Rev. 1995, 24, 19-33; A. Ormond, H.
Freeman, Materials 2013, 6, 817.
a) T. J. Dougherty, G. B. Grindey, R. Fiel, K. R. Weishaupt, D. G. Boyle,
JNCI: Journal of the National Cancer Institute 1975, 55, 115-121; b) T.
J. Dougherty, J. Clin. Laser Med. & Surg. 2002, 20, 3-7.
P. R. Ogilby, Chem. Soc. Rev. 2010, 39, 3181-3209.
[6]
[7]
[16] J. Schmitt, V. Heitz, A. Sour, F. Bolze, P. Kessler, L. Flamigni, B.
Ventura, C. S. Bonnet, É. Tóth, Chem. Eur. J. 2016, 22, 2775-2786.
[17] a) N. Hamon, M. Galland, M. Le Fur, A. Roux, A. Duperray, A. Grichine,
C. Andraud, B. Le Guennic, M. Beyler, O. Maury, R. Tripier Chem.
a) P. Couleaud, V. Morosini, C. Frochot, S. Richeter, L. Raehm, J.-O.
Durand, Nanoscale 2010, 2, 1083-1095; b) L. B. Josefsen, R. W. Boyle,
Theranostics 2012, 2, 916-966.
7
This article is protected by copyright. All rights reserved.