10.1002/anie.202012614
Angewandte Chemie International Edition
COMMUNICATION
2017, 545, 84; g) M. Gaydou, T. Moragas, F. Juliá-Hernández, R.
Martin, J. Am. Chem. Soc. 2017, 139, 12161; h) F. Chen, K. Chen, Y.
Zhang, Y. He, Y.-M. Wang, S. Zhu, J. Am. Chem. Soc. 2017, 139,
13929; i) F. Zhou, J. Zhu, Y. Zhang, S. Zhu, Angew. Chem. Int. Ed.
2018, 57, 4058; j) J. Xiao, Y. He, F. Ye, S. Zhu, Chem 2018, 4, 1645; k)
S. L. Shevick, C. Obradors, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140,
12056; l) S.-Z. Sun, M. Börjesson, R. Martin-Montero, R. Martin, J. Am.
Chem. Soc. 2018, 140, 12765; m) Z. Wang, H. Yin, G. C. Fu, Nature
2018, 563, 379; n) F. Zhou, Y. Zhang, X. Xu, S. Zhu, Angew. Chem. Int.
Ed. 2019, 58, 1754; o) Y. Zhang, X. Xu, S. Zhu, Nat. Commun. 2019,
10, 1752; p) J. He, P. Song, X. Xu, S. Zhu, Y. Wang, ACS. Catal. 2019,
9, 3253; q) J. Nguyen, A. Chong, G. Lalic, Chem. Sci. 2019, 10, 3231;
r) S. Bera, X. Hu, Angew. Chem. Int. Ed. 2019, 58, 13854; s) S.-Z. Sun,
C. Romano, R. Martin, J. Am. Chem. Soc. 2019, 141, 16197; t) D. Qian,
X. Hu, Angew. Chem. Int. Ed. 2019, 58, 18519; u) S.-J. He, J.-W. Wang,
Y. Li, Z.-Y. Xu, X.-X. Wang, X. Lu, Y. Fu, J. Am. Chem. Soc. 2020, 142,
214; v) G. S. Kumar, A. Peshkov, A. Brzozowska, P. Nikolaienko, C.
Zhu, M. Rueping, Angew. Chem. Int. Ed. 2020, 59, 6513; w) K.-J. Jiao,
D. Liu, H.-X. Ma, H. Qiu, P. Fang, T.-S. Mei, Angew. Chem. Int. Ed.
2020, 59, 6520; x) Z.-P. Yang, G. C. Fu, J. Am. Chem. Soc. 2020, 142,
5870; y) Y. Zhang, J. He, P. Song, Y. Wang, S. Zhu, CCS Chem. 2020,
2, 2259; z) Y. He, C. Liu, L. Yu, S. Zhu, Angew. Chem. Int. Ed. 2020,
Catalytic enantioselective hydroalkenylation of styrenes was
also observed when a chiral bisoxazoline ligand was used. The
development of
a migratory asymmetric version of this
transformation and detailed mechanistic studies are currently in
progress in our laboratory.
Acknowledgements
Support was provided by NSFC (21871173, 21572140).
Keywords: alkenes • asymmetric catalysis • isomerization •
nickel • alkenylation
[1]
For selected reviews on metal-hydride chemistry, see: a) C. Deutsch, N.
Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 2916; b) M. T. Pirnot,
Y.-M. Wang, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48; c) K.
D. Nguyen, B. Y. Park, T. Luong, H. Sato, V. J. Garza, M. J. Krische,
Science 2016, 354, 300; d) N. A. Eberhardt, H. Guan, Chem. Rev. 2016,
116, 8373; e) S. W. M. Crossley, C. Obradors, R. M. Martinez, R. A.
Shenvi, Chem. Rev. 2016, 116, 8912; f) J. Chen, J. Guo, Z. Lu, Chin. J.
Chem. 2018, 36, 1075.
[8]
For
recent
Ni(II)H-catalyzed
redox-neutral
(migratory)
hydrofunctionalization, see: a) W.-C. Lee, C.-H. Wang, Y.-H. Lin, W.-C.
Shih, T.-G. Ong, Org. Lett. 2013, 15, 5358; b) J. S. Bair, Y. Schramm, A.
G. Sergeev, E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc.
2014, 136, 13098; c) L.-J. Xiao, L. Cheng, W.-M. Feng, M.-L. Li, J.-H.
Xie, Q.-L. Zhou, Angew. Chem. Int. Ed. 2018, 57, 461; d) H. Lv, L.-J.
Xiao, D. Zhao, Q.-L. Zhou, Chem. Sci. 2018, 9, 6839; e) Y.-G. Chen, B.
Shuai, X.-T. Xu, Y.-Q. Li, Q.-L. Yang, H. Qiu, K. Zhang, P. Fang, T.-S.
Mei, J. Am. Chem. Soc. 2019, 141, 3395; f) X.-Y. Lv, C. Fan, L.-J. Xiao,
J.-H. Xie, Q.-L. Zhou, CCS Chem. 2019, 1, 328; g) H. Lv, H. Kang, B.
Zhou, X. Xue, K. M. Engle, D. Zhao, Nat. Commun. 2019, 10, 5025; h)
Y. Li, Y. Luo, L. Peng, Y. Li, B. Zhao, W. Wang, H. Pang, R. Bai, Y. Lan,
G. Yin, Nat. Commun. 2020, 11, 417; i) Y. He, C. Liu, L. Yu, S. Zhu,
Angew. Chem. Int. Ed. 2020, 59, 9186; j) J. S. Marcum, T. R. Taylor, S.
J. Meek, Angew. Chem. Int. Ed. 2020, 59, 14070.
[2]
For selected examples about Ni(I)H, see: a) J. T. Binder, C. J. Cordier,
G. C. Fu, J. Am. Chem. Soc. 2012, 134, 17003; b) J. Cornella, E.
Gómez-Bengoa, R. Martin, J. Am. Chem. Soc. 2013, 135, 1997; c) C. J.
Cordier, R. J. Lundgren, G. C. Fu, J. Am. Chem. Soc. 2013, 135,
10946; d) I. Pappas, S. Treacy, P. J. Chirik, ACS Catal. 2016, 6, 4105;
e) Y. Kuang, D. Anthony, J. Katigbak, F. Marrucci, S. Humagain, T.
Diao, Chem 2017, 3, 268; f) J. Diccianni, Q. Lin, T. Diao, Acc. Chem.
Res. 2020, 53, 906.
[3]
[4]
For reviews on remote functionalization via chain-walking, see: a) E.
Larionov, H. Li, C. Mazet, Chem. Commun. 2014, 50, 9816; b) A.
Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209; c) H.
Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 2018,
4, 153; d) D. Janssen-Müller, B. Sahoo, S.-Z. Sun, R. Martin, Isr. J.
Chem. 2020, 60, 195.
[9]
a) R. L. Reyes, M. Sato, T. Iwai, K. Suzuki, S. Maeda, M. Sawamura,
Science 2020, 369, 970; b) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R.
R. Knowles, Nature 2016, 539, 268; c) J. C. K. Chu, T. Rovis, Nature
2016, 539, 272.
For recent Pd-catalyzed chain-walking, see: a) E. W. Werner, T.-S. Mei,
A. J. Burckle, M. S. Sigman, Science 2012, 338, 1455; b) S. Aspin, A.-S.
Goutierre, P. Larini, R. Jazzar, O. Baudoin, Angew. Chem. Int. Ed.
2012, 51, 10808; c) T.-S. Mei, H. H. Patel, M. S. Sigman, Nature 2014,
508, 340; d) E. Larionov, L. Lin, L. Guénée, C. Mazet, J. Am. Chem.
Soc. 2014, 136, 16882; e) T. Kochi, T. Hamasaki, Y. Aoyama, J.
Kawasaki, F. Kakiuchi, J. Am. Chem. Soc. 2012, 134, 16544; f) S.
Dupuy, K.-F. Zhang, A.-S. Goutierre, O. Baudoin, Angew. Chem. Int.
Ed. 2016, 55, 14793; g) L. Lin, C. Romano, C. Mazet, J. Am. Chem.
Soc. 2016, 138, 10344; h) S. Singh, J. Bruffaerts, A. Vasseur, I. Marek,
Nat. Commun. 2017, 8, 14200; i) D. G. Kohler, S. N. Gockel, J. L.
Kennemur, P. J. Waller, K. L. Hull, Nat. Chem. 2018, 10, 333; j) J.
Bruffaerts, D. Pierrot, I. Marek, Nat. Chem. 2018, 10, 1164.
[10] For selected reviews on nickel catalysis, see: a) M. R. Netherton, G. C.
Fu, Adv. Synth. Catal. 2004, 346, 1525; b) X. Hu, Chem. Sci. 2011, 2,
1867; c) J. Montgomery, Organonickel Chemistry. In Organometallics in
Synthesis; B. H. Lipshutz, Ed.; John Wiley & Sons, Inc.: Hoboken,
2013; pp 319–428; d) S. Z. Tasker, E. A. Standley, T. F. Jamison,
Nature 2014, 509, 299.
[11] For selected reviews on nickel-catalyzed reductive cross-coupling, see:
a) C. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini, A.
Jacobi von Wangelin, Chem. Eur. J. 2014, 20, 6828; b) D. A. Everson,
D. J. Weix, J. Org. Chem. 2014, 79, 4793; c) T. Moragas, A. Correa, R.
Martin, Chem. Eur. J. 2014, 20, 8242; d) D. J. Weix, Acc. Chem. Res.
2015, 48, 1767; e) E. P. Jackson, H. A. Malik, G. J. Sormunen, R. D.
Baxter, P. Liu, H. Wang, A.-R. Shareef, J. Montgomery, Acc. Chem.
Res. 2015, 48, 1736; f) X. Wang, Y. Dai, H. Gong, Top. Curr. Chem.
2016, 374, 43; g) K. E. Poremba, S. E. Dibrell, S. E. Reisman, ACS
Catal. 2020, 10, 8237; h) J. B. Diccianni, T. Diao, Trends Chem. 2019,
1, 830; i) X.-X. Wang, X. Lu, Y. Li, J.-W. Wang, Y. Fu, Sci. China Chem.
2020, doi: 10.1007/s11426-020-9838-x.
[5]
[6]
[7]
For recent Zr-catalyzed chain-walking, see: a) A. Masarwa, D. Didier, T.
Zabrodski, M. Schinkel, L. Ackermann, I. Marek, Nature 2014, 505,
199; b) L. Mola, M. Sidera, S. P. Fletcher, Aust. J. Chem. 2015, 68,
401; c) Y. Gao, C. Yang, S. Bai, X. Liu, Q. Wu, J. Wang, C. Jiang, X. Qi,
Chem 2020, 6, 675.
For recent Co-catalyzed chain-walking, see: a) J. V. Obligacion, P. J.
Chirik, J. Am. Chem. Soc. 2013, 135, 19107; b) T. Yamakawa, N.
Yoshikai, Chem. Asian J. 2014, 9, 1242; c) M. L. Scheuermann, E. J.
Johnson, P. J. Chirik, Org. Lett. 2015, 17, 2716; d) X. Chen, Z. Cheng,
J. Guo, Z. Lu, Nat. Commun. 2018, 9, 3939.
[12] a) A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2014, 136, 14365;
b) J. Liu, Q. Ren, X. Zhang, H. Gong, Angew. Chem. Int. Ed. 2016, 55,
15544; c) N. Suzuki, J. L. Hofstra, K. E. Poremba, S. E. Reisman, Org.
Lett. 2017, 19, 2150. d) A. M. Olivares, D. J. Weix, J. Am. Chem. Soc.
2018, 140, 2446.
For recent Ni(I)H-catalyzed reductive (migratory) hydrofunctionalization,
see: a) I. Busolv, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu,
Angew. Chem. Int. Ed. 2015, 54, 14523; b) I. Buslov, F. Song, X. Hu,
Angew. Chem. Int. Ed. 2016, 55, 12295; c) X. Lu, B. Xiao, Z. Zhang, T.
Gong, W. Su, Y. Fu, L. Liu, Nat. Commun. 2016, 7, 11129; d) S. A.
Green, J. L. M. Matos, A. Yagi, R. A. Shenvi, J. Am. Chem. Soc. 2016,
138, 12779; e) Y. He, Y. Cai, S. Zhu, J. Am. Chem. Soc. 2017, 139,
1061; f) F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature
[13] For β-substituted styrenes, no desired product was obtained.
[14] For vinylarenes with moderate yields (8k, 9h, 9l), the major by-products
were the reduction of the corresponding vinylarenes.
5
This article is protected by copyright. All rights reserved.