10.1002/anie.202007180
Angewandte Chemie International Edition
COMMUNICATION
Based on this experimental evidence, the following catalytic
cycle can be proposed (Scheme 5). Michael addition of 2 to in
situ- generated cationic 1:1:1 complex A of Fe(III), L5, and 1
in the narrow cavity.
In conclusion, we have succeeded in the first one-pot Michael
addition–enantioselective Conia-ene cyclization tandem reaction
promoted by chiral iron(III)–silver(I) cooperative catalysts. The
Conia-ene cyclization could predominantly accelerate through
this dual activation. On the other hand, retro-Michael reaction
was much slower in the presence of iron(III) catalyst due to the
mild Lewis acidity. Further study is planned to design
cooperative catalysts to broaden the substrate scope, and to
gain deeper insights into the mechanism.
gives active intermediate
B in the presence of AgOTf.
Subsequently, enantioselective Conia-ene cyclization occurs
through B and C to give intermediate D. Finally, product 4 and
A are produced through ligand exchange between D and 1.
To understand the absolute stereochemical outcome, the
favored transition state TS1 is proposed based on an (R)-
configuration of product 4aa and the X-ray crystal structure[11] of
[FeCl2•L52]+[FeCl4]–[CHCl3] (Figure 1). Ligand L4 should be
predominantly coordinated to Fe(III) at equatorial–equatorial
sites. Next, Michael adduct 3aa would be coordinated to Fe(III)
at equatorial–axial sites. TS 1 in the wide cavity would be
sterically favored among four possible transition states.[14] The
favored pathway via TS1 leads to (R)-4aa, as observed
experimentally. Furthermore, other possible transition states in
the narrow cavity might be suppressed due to the steric
hindrance between the 6-substituent (R) of L and N-SO2Ar of 3
Acknowledgements
This research was supported in part by JSPS KAKENHI (Grant
Numbers 15H05755, 15H06266, 17K14484, and 15H05810), the
Toyoaki Scholarship Foundation, the Society of Iodine Science
and MEXT, Japan.
*
Conflict of Interest
+
P
P
Fe(OTf)3
O
O
O
O
O
L4
The authors declare no conflict of interest.
O
O
R1
OR2
R1
OR2
1
Keywords: Michael addition • Conia-ene cyclization • tandem
HN
S
R3
N
*
O
reaction • enantioselective • cooperative catalysis
S
R3
P
P
4
+
AgOTf
O
O
O
O
O
O
2
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
R1
OR2
+
Fe(OTf)2
O
[1]
[2]
a) J. M. Conia, P. Le Perchec, Synthesis 1975, 1-19; b) D. Hack, M.
Blümel, P. Chauhan, A. R. Philipps, D. Enders, Chem. Soc. Rev. 2015,
44, 6059-6093.
X–
O
1
*
*
R1
OR2
P
P
P
P
A
Conia-ene type reaction of nitrogen-tethered acetylenic 1,3-
O
O
O
O
A
*
dicarbonyl and related substrates: a) E. Dumez, J. Rodriguez, J.-P.
Dulcère, Chem. Commun. 1997, 1831–1832; b) B. Clique, N. Monteiro,
G. Balme, Tetrahedron Lett. 1999, 40, 1301–1304; c) N. Monteiro, G.
Balme, J. Org. Chem. 2000, 65, 3223–3226; d) S. Azoulay, N. Monteiro,
G. Balme, Tetrahedron Lett. 2002, 43, 9311–9314; e) L. Martinon, S.
Azoulay, N. Monteiro, E. P. Kündig, G. Balme, J. Organomet. Chem.
2004, 689, 3831–3836; f) S. Morikawa, S. Yamazaki, Y. Furusaki, N.
Amano, K. Zenke, K. Kakiuchi, J. Org. Chem. 2006, 71, 3540–3544; g)
T. P. Lebold, A. B. Leduc, M. A. Kerr, Org. Lett. 2009, 11, 3770–3772.
A Conia-ene type reaction of oxygen-tethered acetylenic 1,3-dicarbonyl
substrates: a) X. Marat, N. Monteiro, G. Balme, Synlett 1997, 845–847;
b) M. Cavicchioli, X. Marat, N. Monteiro, B. Hartmann, G. Balme,
Tetrahedron Lett. 2002, 43, 2609–2611; c) M. Nakamura, C. Liang, E.
Nakamura, Org. Lett. 2004, 6, 2015–2017; d) A. B. Leduc, T. P. Lebold,
M. A. Kerr, J. Org. Chem. 2009, 74, 8414–8416.
Fe(OTf)2
O
Fe(OTf)2
X–
HX
O
O
O
R1
OR2
P
P
R1
OR2
O
O
N
S
N
S
R3
Fe(OTf)2
O
R3
O
Ag–OTf
O
O
O
O
B
D
AgOTf
R1
OR2
Ag
OTf–
X–
=
[OTf]– or
[3]
N
S
R3
[Fe(OTf)4]–
O
O
C
Scheme 5. Proposed catalytic cycle.
[4]
[5]
K. Takahashi, M. Midori, K. Kawano, J. Ishihara, S. Hatakeyama,
Angew. Chem. Int. Ed. 2008, 47, 6244–6246.
a) B. K. Corkey, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 17168–
17169; b) T. Yang, A. Ferrali, F. Sladojevich, L. Campbell, D. J. Dixon,
J. Am. Chem. Soc. 2009, 131, 9140–9141; c) A. Matsuzawa, T.
Mashiko, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2011, 50,
7616–7619; d) S. Suzuki, E. Tokunaga, D. S. Reddy, T. Matsumoto, M.
Shiro, N. Shibata, Angew. Chem. Int. Ed. 2012, 51, 4131–4135; e) S.
Shaw, J. D. White, J. Am. Chem. Soc. 2014, 136, 13578–13581; f) M.
Blümel, D. Hack, L. Ronkartz, C. Vermeeren, D. Enders, Chem.
Commun. 2017, 53, 3956–3959; g) M. Cao, A. Yesilcimen, M. Wasa, J.
Am. Chem. Soc. 2019, 141, 4199–4203.
R
R
O
O
OTf
Fe
O
OO
O
O
O
O
O
Ph
OEt
TfO
R
R
wide cavity
O
narrow cavity
N
O
S
[6]
For selected reviews on enantioselective cooperative catalysis, see: a)
H. Yamamoto, K. Futatsugi, Angew. Chem., Int. Ed. 2005, 44,
1924−1942; b) D. H. Paull, C. J. Abraham, M. T. Scerba, E. Alden-
Danforth, T. Lectka, Acc. Chem. Res. 2008, 41, 655−633; c) M.
Shibasaki, N. Kumagai, In Cooperative Catalysis: Designing Efficient
AgOTf
(R)-4aa
TS1 (favored)
Ar
Figure 1. Plausible transition state TS1 for the Conia-ene reaction of 3aa.
4
This article is protected by copyright. All rights reserved.