10.1002/chem.201605511
Chemistry - A European Journal
FULL PAPER
[3]
J.M. Abendroth, O.S. Bushuyev, P.S. Weiss, C.J. Barrett, ACS Nano
2015, 9, 7746-7768.
turned out to have only a small influence. In light of the desired
property changes of functional units attached to DAEs, such as
[4]
[5]
E. Orgiu, P. Samorì, Adv. Mater. 2014, 26, 1827-1845.
binding motifs or catalytically active moieties,
a
larger
a) M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014,
114, 12174-12277; b) M. Irie, Pure Appl. Chem. 2015, 87, 617-626.
H.D. Samachetty, N.R. Branda, Pure Appl. Chem. 2006, 78, 2351-2359.
a) S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 2007,
446, 778-781; b) F. Terao, M. Morimoto, M. Irie, Angew. Chem. Int. Ed.
2012, 51, 901-904; c) D. Kitagawa, H. Nishi, S. Kobatake, Angew.
Chem. Int. Ed. 2013, 52, 9320-9322; d) S. Ohshima, M. Morimoto, M.
Irie, Chem. Sci. 2015, 6, 5746-5752.
modulation of electron density is certainly desired. Therefore,
the electronic communication between the functional unit and
the DAE core should be increased by moving the functional unit
closer to the DAE core, for example omitting the phenyl group,
or perhaps more promising by using the functional unit itself
instead of one thiophene or thiazole heterocycle. Furthermore,
electronic modulation can potentially be increased using -M
substituents instead of CF3 groups or by placing the acceptor
group at the free β-position of the thiophene ring. Research into
these directions is currently ongoing in our laboratories.
In addition to the remarkable electronic properties of α-
trifluoromethylated DAEs, interesting insights into their
photochemistry were obtained. DAEs symmetrically substituted
with α-CF3 groups on both hetaryl rings show a strong reduction
of the cyclization quantum yield, whereas the ring-opening
quantum yield was significantly increased when compared to the
methyl substituted derivatives. Importantly, installing only one
CF3 group on one hetaryl ring restores the usual photochemical
behavior of DAEs. The combination of a 4-N,N-dimethylaniline
donor and a CF3 acceptor placed in the two α-positions of one
thiophene moiety provides attractive new DAE derivatives, which
exhibit a marked bathochromic shift of the absorbance of the
open isomer, an increased quantum yield for ring-closure, and
good fatigue resistance.
[6]
[7]
[8]
a) T. Hirose, M. Irie, K. Matsuda, Adv. Mater. 2008, 20, 2137-2141; b) J.
Kärnbratt, M. Hammarson, S. Li, H.L. Anderson, B. Albinsson, J.
Andréasson, Angew. Chem. Int. Ed. 2010, 49, 1854-1857; c) S. Yagai,
K. Iwai, M. Yamauchi, T. Karatsu, A. Kitamura, S. Uemura, M.
Morimoto, H. Wang, F. Würthner, Angew. Chem. Int. Ed. 2014, 53,
2602-2606; d) M. Han, Y. Luo, B. Damaschke, L. Gómez, X. Ribas, A.
Jose, P. Peretzki, M. Seibt, G.H. Clever, Angew. Chem. Int. Ed. 2016,
55, 445-449.
[9]
a) D. Vomasta, C. Högner, N.R. Branda, B. König, Angew. Chem. Int.
Ed. 2008, 47, 7644-7647; b) C. Falenczyk, M. Schiedel, B. Karaman, T.
Rumpf, N. Kuzmanovic, M. Grotli, W. Sippl, M. Jung, B. König, Chem.
Sci. 2014, 5, 4794-4799; c) B. Reisinger, N. Kuzmanovic, P. Löffler, R.
Merkl, B. König, R. Sterner, Angew. Chem. Int. Ed. 2014, 53, 595-598;
d) O. Babii, S. Afonin, L.V. Garmanchuk, V.V. Nikulina, T.V.
Nikolaienko, O.V. Storozhuk, D.V. Shelest, O.I. Dasyukevich, L.I.
Ostapchenko, V. Iurchenko, S. Zozulya, A.S. Ulrich, I.V. Komarov,
Angew. Chem. Int. Ed. 2016, 55, 5493-5496.
[10] a) T. Fukaminato, T. Sasaki, T. Kawai, N. Tamai, M. Irie, J. Am. Chem.
Soc. 2004, 126, 14843-14849; b) T. Fukaminato, T. Doi, N. Tamaoki, K.
Okuno, Y. Ishibashi, H. Miyasaka, M. Irie, J. Am. Chem. Soc. 2011, 133,
4984-4990; c) T. Fukaminato, J. Photochem. Photobiol., C 2011, 12,
177-208; d) M. Pärs, C.C. Hofmann, K. Willinger, P. Bauer, M.
Thelakkat, J. Köhler, Angew. Chem. Int. Ed. 2011, 50, 11405-11408; e)
M. Berberich, M. Natali, P. Spenst, C. Chiorboli, F. Scandola, F.
Würthner, Chem. Eur. J, 2012, 18, 13651-13664.
Acknowledgements
The authors thank Dr. Beatrice Braun-Cula for obtaining single
crystal X-ray structural data and Jana Hildebrandt for synthetic
support. F.E. thanks the Fonds der Chemischen Industrie for
[11] L. Hou, X. Zhang, T.C. Pijper, W.R. Browne, B.L. Feringa, J. Am. Chem.
Soc. 2014, 136, 910-913.
[12] K. Xu, J. Zhao, X. Cui, J. Ma, Chem. Commun. 2015, 51, 1803-1806.
[13] a) N. Katsonis, T. Kudernac, M. Walko, S.J. vanꢀderꢀMolen, B.J.
vanꢀWees, B.L. Feringa, Adv. Mater. 2006, 18, 1397-1400; b) C. Jia, J.
Wang, C. Yao, Y. Cao, Y. Zhong, Z. Liu, Z. Liu, X. Guo, Angew. Chem.
Int. Ed. 2013, 52, 8666-8670; c) F. Meng, Y.-M. Hervault, Q. Shao, B.
Hu, L. Norel, S. Rigaut, X. Chen, Nat. Commun. 2014, 5, 3023; d) T.
Toyama, K. Higashiguchi, T. Nakamura, H. Yamaguchi, E. Kusaka, K.
Matsuda, J. Phys. Chem. Lett. 2016, 7, 2113-2118; e) C. Jia, A.
Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D.
Wang, B. Feng, Z. Liu, G. Zhang, D.-H. Qu, H. Tian, M.A. Ratner, H.Q.
Xu, A. Nitzan, X. Guo, Science 2016, 352, 1443-1445.
providing
a doctoral fellowship. Generous support by the
European Research Council (ERC via ERC-2012-STG_308117
“Light4Function”), the European Commission (via MSCA-ITN
“iSwitch” GA No. 642196), and the German Research
Foundation (DFG via SFB 658, project B8) is gratefully
acknowledged.
Keywords: photochromism • diarylethenes • frontier molecular
orbital energies • quantum yields • cyclic voltammetry
[14] a) A.J. Kronemeijer, H.B. Akkerman, T. Kudernac, B.J. van Wees, B.L.
Feringa, P.W.M. Blom, B. de Boer, Adv. Mater. 2008, 20, 1467-1473; b)
P. Zacharias, M.C. Gather, A. Köhnen, N. Rehmann, K. Meerholz,
Angew. Chem. Int. Ed. 2009, 48, 4038-4041; c) R.C. Shallcross, P.O.
Körner, E. Maibach, A. Köhnen, K. Meerholz, Adv. Mater. 2013, 25,
4807-4813; d) R. Hayakawa, K. Higashiguchi, K. Matsuda, T. Chikyow,
Y. Wakayama, ACS Appl. Mater. Interfaces 2013, 5, 3625-3630.
[15] a) E. Orgiu, N. Crivillers, M. Herder, L. Grubert, M. Pätzel, J. Frisch, E.
Pavlica, D.T. Duong, G. Bratina, A. Salleo, N. Koch, S. Hecht, P.
Samorì, Nature Chem. 2012, 4, 675-679; b) M.E. Gemayel, K.
Börjesson, M. Herder, D.T. Duong, J.A. Hutchison, C. Ruzié, G.
Schweicher, A. Salleo, Y. Geerts, S. Hecht, E. Orgiu, P. Samorì, Nat.
Commun. 2015, 6, 6330; c) K. Börjesson, M. Herder, L. Grubert, D.T.
Duong, A. Salleo, S. Hecht, E. Orgiu, P. Samorì, J. Mater. Chem. C
2015, 3, 4156-4161; d) T. Leydecker, M. Herder, E. Pavlica, G. Bratina,
S. Hecht, E. Orgiu, P. Samorì, Nat. Nanotechnol. 2016, 11, 769-775.
[1]
a) Photochromism: Molecules and Systems (Eds.: H. Dürr, H. Bouas-
Laurent), Elsevier Science, Amsterdam, 2003; b) Molecular Switches
(Eds.: B. L. Feringa, W. R. Browne), 2nd ed., Wiley-VCH, Weinheim,
2011; c) New Frontiers in Photochromism (Eds.: M. Irie, Y. Yokoyama,
T. Seki), Springer Japan, Tokyo, 2013; d) Photochromic Materials:
Preparation, Properties and Applications (Eds.: H. Tian, J. Zhang), 1st
ed., Wiley-VCH, Weinheim, 2016.
[2]
a) W.A. Velema, W. Szymanski, B.L. Feringa, J. Am. Chem. Soc. 2014,
136, 2178-2191; b) J. Broichhagen, J.A. Frank, D. Trauner, Acc. Chem.
Res. 2015, 48, 1947-1960; c) M.M. Lerch, M.J. Hansen, G.M. van Dam,
W. Szymanski, B.L. Feringa, Angew. Chem. Int. Ed. 2016, 55, 10978-
10999.
This article is protected by copyright. All rights reserved.