LETTER
5801. (f) Verma, A. K.; Singh, J.; Chaudhary, R.
Synthesis of Aryl Thioethers
2325
Current Chemistry; Vol. 266; Larhed, M.; Olafsson, K.,
Eds.; Springer: Berlin, Heidelberg, 2006. (c) Microwave in
Organic Synthesis; Loupy, A., Ed.; Wiley-VCH: Weinheim,
2006, 2nd ed..
Tetrahedron Lett. 2007, 48, 7199. (g) Kwong, F. Y.;
Buchwald, S. L. Org. Lett. 2002, 4, 3517. (h) Bates, C. G.;
Saejueng, P.; Doherty, M. Q.; Venkataraman, D. Org. Lett.
2004, 6, 5005.
(25) For recent reviews on microwave-promoted reactions, see:
(a) Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127.
(b) Coquerel, Y.; Rodriguez, J. Eur. J. Org. Chem. 2008,
1125. (c) Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107,
2563. (d) Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem.
Res. 2002, 35, 717.
(14) For representative examples of nickel-catalyzed C–S bond
formation, see: (a) Zhang, Y.; Ngeow, K. N.; Ying, J. Org.
Lett. 2007, 9, 3495. (b) Percec, V.; Bae, J.-Y.; Hill, D. H.
J. Org. Chem. 1995, 60, 6895. (c) Screttas, C. G.; Smonou,
I. C. J. Organomet. Chem. 1988, 342, 143.
(15) For cobalt-catalyzed C–S bond formation, see: Wong, Y.-C.;
Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613.
(16) For indium-catalyzed C–S bond formation, see: (a) Reddy,
V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem.
2009, 74, 3189. (b) Reddy, V. P.; Kumar, A. V.; Swapna, K.;
Rao, K. Org. Lett. 2009, 11, 1697.
(17) For iron-catalyzed C–S bond formation, see: (a) Lin, Y.-Y.;
Wang, Y.-J.; Lin, C.-H.; Cheng, J.-H.; Lee, C.-F. J. Org.
Chem. 2012, 77, 6100. (b) Wu, J.-R.; Lin, C.-H.; Lee, C.-F.
Chem. Commun. 2009, 4450. (c) Qiu, J.-W.; Zhang, X.-G.;
Tang, R.-Y.; Zhong, P.; Lia, J.-H. Adv. Synth. Catal. 2009,
351, 2319. (d) Correa, A.; Carril, M.; Bolm, C. Angew.
Chem. Int. Ed. 2008, 47, 2880; Angew. Chem. 2008, 120,
2922.
(18) For rhodium-catalyzed C–S bond formation, see:
(a) Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M.
J. Am. Chem. Soc. 2008, 130, 12214. (b) Ajiki, K.; Hirano,
M.; Tanaka, K. Org. Lett. 2005, 7, 4193. (c) Lai, C.-S.; Kao,
H.-L.; Wang, Y.-J.; Lee, C.-F. Tetrahedron Lett. 2012, 53,
4365. (d) Arisawa, M.; Ichikawa, T.; Yamaguchi, M. Org.
Lett. 2012, 14, 5318.
(19) For manganese-catalyzed C–S bond formation, see: (a) Liu,
T.-J.; Yi, C.-L.; Chan, C.-C.; Lee, C.-F. Chem. Asian J.
2013, 8, 1029. (b) Bandaru, M.; Sabbavarpu, N. M.; Katla,
R.; Yadavalli, V. D. N. Chem. Lett. 2010, 39, 1149.
(20) Cheng, C.-H.; Ramesh, C.; Kao, H.-L.; Wang, Y.-J.; Chan,
C.-C.; Lee, C.-F. J. Org. Chem. 2012, 77, 10369.
(26) For selected examples on microwave-assisted reactions, see:
(a) Erdélyi, M.; Gogoll, A. J. Org. Chem. 2003, 68, 6431.
(b) Erdélyi, M.; Gogoll, A. J. Org. Chem. 2001, 66, 4165.
(c) Chen, Y.; Markina, N. A.; Larock, R. C. Tetrahedron
2009, 65, 8908. (d) Shook, B. C.; Chakravarty, D.; Jackson,
P. F. Tetrahedron Lett. 2009, 50, 1013. (e) Sedelmeier, J.;
Ley, S. V.; Lange, H.; Baxendale, I. R. Eur. J. Org. Chem.
2009, 4412. (f) Awuah, E.; Capretta, A. Org. Lett. 2009, 11,
3210. (g) Huang, H.; Liu, H.; Jiang, H.; Chen, K. J. Org.
Chem. 2008, 73, 6037.
(27) (a) Harrisson, P.; Morris, J.; Marder, T. B.; Steel, P. G. Org.
Lett. 2009, 11, 3586. (b) Rentzsch, C. F.; Tosh, E.;
Herrmann, W. A.; Kühn, F. E. Green Chem. 2009, 11, 1610.
(28) General Procedure for the Synthesis of Compounds 2a–q
A flask equipped with a magnetic stirrer bar was charged
with [Ir(cod)OMe)]2 (99.0 mg, 0.015 mmol), 4,4′-di-tert-
butyl-2,2′-dipyridyl (82.0 mg, 0.03 mmol) and pin2B2 (254
mg, 1.0 mmol) in a nitrogen-filled glove box. This flask was
then covered with a rubber septum and removed from the
glove box. Under a nitrogen atmosphere, arene (1.0 mmol)
and MTBE (2.0 mL) were added via syringe, and the
reaction vessel was placed under microwave irradiation at
80 °C. After stirring at this temperature for 1 h, the
heterogeneous mixture was cooled to r.t., after removal of
the volatile components under vacuum. The flask was
returned to the glove box, Cu(OAc)2 (136 mg, 0.75 mmol)
was added, the flask was then covered with a rubber septum
and removed from the glove box. Under an argon
atmosphere, aryl thiol (0.5 mmol), pyridine (0.123 mL, 1.5
mmol), and DMF (2.0 mL) were added via syringe, and the
reaction vessel was placed under microwave irradiation at
135 °C. After stirring at this temperature for 1.5 h, the
heterogeneous mixture was cooled to r.t. and diluted with
EtOAc (20 mL). The resulting solution was directly filtered
through a pad of silica gel then washed with EtOAc (20 mL)
and concentrated to give the crude material which was then
purified by column chromatography (SiO2, hexane) to yield
2.
(21) (a) Cheng, J.-H.; Yi, C.-L.; Liu, T.-J.; Lee, C.-F. Chem.
Commun. 2012, 48, 8440. (b) Yi, C.-L.; Liu, T.-J.; Cheng,
J.-H.; Lee, C.-F. Eur. J. Org. Chem. 2013, 3910.
(22) For selected examples, see: (a) Chen, H. Y.; Schlecht, S.;
Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995.
(b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.;
Anastasi, N.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124,
390. (c) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama,
T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127,
14263. (d) Cho, J. Y.; Iverson, C. N.; Smith, M. R. J. Am.
Chem. Soc. 2000, 122, 12868. (e) Cho, J. Y.; Tse, M. K.;
Holmes, D. R.; Maleczka, E.; Smith, M. R. Science 2002,
295, 305. (f) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F.
Angew. Chem. Int. Ed. 2012, 51, 536; Angew. Chem. 2012,
124, 551 . (g) Liu, T.; Shao, X.; Wu, Y.; Shen, Q. Angew.
Chem. Int. Ed. 2012, 51, 540; Angew. Chem. 2012, 124, 555.
(h) Crawford, A. G.; Liu, Z.; Mkhalid, I. A. I.; Thibault,
M.-H.; Schwarz, N.; Alcaraz, G.; Steffen, A.; Collings, J. C.;
Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. Chem. Eur.
J. 2012, 18, 5022. (i) Liskey, C. W.; Liao, X.; Hartwig, J. F.
J. Am. Chem. Soc. 2010, 132, 11389. (j) Boebel, T. A.;
Hartwig, J. F. Tetrahedron 2008, 64, 6824.
Data for some representative examples are shown here.
3-Chloro-5-methylphenyl Phenyl Sulfide (2a)21a
Following the general procedure, using [Ir(cod)OMe]2 (99.0
mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (82.0 mg,
0.03 mmol), pin2B2 (254 mg, 1.0 mmol), and 3-
chlorotoluene (0.123 mL, 1.0 mmol) in MTBE (2.0 mL) for
the first step. After removal of the volatile components under
vacuum, Cu(OAc)2 (136 mg, 0.75 mmol), thiophenol (0.053
mL, 0.5 mmol), and DMF (2.0 mL) were used, then purified
by column chromatography (SiO2, hexane) to provide 2a as
a colorless oil (70.0 mg, 60% yield). 1H NMR (400 MHz,
CDCl3): δ = 2.23 (s, 3 H), 6.97–7.04 (m, 3 H), 7,25–7.38 (m,
5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.0, 126.6,
127.5, 127.7, 128.7, 129.3, 132.0, 134.1, 134.4, 138.0, 140.4
ppm.
(23) (a) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett.
2000, 2, 2019. (b) Savarin, C.; Srogl, J.; Liebeskind, L. S.
Org. Lett. 2002, 4, 4309. (c) Taniguchi, N. J. Org. Chem.
2007, 72, 1241.
(24) (a) Kappe, C. O.; Dallinger, D.; Murphree, S. S. In Practical
Microwave Synthesis for Organic Chemists: Strategies,
Instruments, and Protocols; Wiley-VCH: Weinheim, 2009.
(b) Microwave Methods in Organic Synthesis, In Topics in
3-Chloro-5-methylphenyl 4-Methoxyphenyl Sulfide
(2b)21a
Following the general procedure, using [Ir(cod)OMe)]2
(99.0 mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 2320–2326