ORGANIC
LETTERS
2012
Vol. 14, No. 17
4670–4673
Highly Enantioselective Organocatalytic
Sulfenylation of 3‑Aryloxindoles
Zhiqiang Han,† Wenchao Chen,† Sheng Dong,§ Caiyun Yang,† Hongjun Liu,‡
Yuanhuang Pan,‡ Lin Yan,† and Zhiyong Jiang*,†,‡
Institute of Chemical Biology and Key Laboratory of Natural Medicine and
Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan,
People’s Republic of China 475004, and Department of Chemistry,
National University of Singapore, 3 Science Drive 3, Singapore 117543
Received July 31, 2012
ABSTRACT
An organocatalytic asymmetric sulfenylation of 3-aryloxindoles with N-(sulfanyl)succinimides has been developed by using commercially
available (DHQD)2PHAL as catalyst. Various chiral 3-benzylthio-, alkylthio-, and arylthio-substituted oxindoles, containing 3,3-disubstituted
quarternary carbon stereocenters, could be obtained in high enantioselectivities (85ꢀ97% ee). Furthermore, the opposite enantiomers of the
sulfenylated products were readily accessible with equal excellent enantioselectivities (86ꢀ95% ee) by replacing the catalyst with (DHQ)2PHAL.
Enantioselective construction of quaternary stereogenic
centers is of fundamental and practical significance but is
often challenging.1 In particular, the enantioselective con-
struction of 3,3-disubstituted oxindoles has attracted special
attention of organic chemists since the oxindole framework
bearing a quaternary carbon stereocenter at the 3-position is
a privileged heterocyclic motif, which is a core backbone of
many natural products and pharmaceutical molecules.2 The
established methods include nucleophilic additions to isa-
tins and miscellaneous reactions of 3-substituted oxindoles,3
affording various 3,3-full carbons4 and 3-heteroatoms, in-
cluding 3-fluoro-,5 3-chloro-,6 3-amino-7 and 3-hydroxy8-
substituted oxindoles. Due to the important role of
† Institute of Chemical Biology, Henan University.
§ Department of Chemistry, National University of Singapore.
(5) (a) Deng, Q.-H.; Wadepohl, H.; Gade, L. H. Chem.;Eur. J. 2011,
17, 14922. (b) Wu, L.; Falivene, L.; Drinkel, E.; Grant, S.; Linden, A.;
Cavallo, L.; Dorta, R. Angew. Chem., Int. Ed. 2012, 51, 2870.
(6) (a) Zheng, W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. J. Am.
Chem. Soc. 2011, 133, 3339. (b) Zhao, M.-X.; Zhang, Z.-W.; Chen, M.-
X.; Tang, W.-H.; Shi, M. Eur. J. Org. Chem. 2011, 3001.
‡ Key Laboratory of Natural Medicine and Immuno-Engineering of Henan
Province.
(1) For selected reviews, see: (a) Corey, E. J.; Guzman-Perez, A.
Angew. Chem., Int. Ed. 1998, 37, 388. (b) Douglas, C. J.; Overman, L. E.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363. (c) Farina, V.; Reeves,
J. T.; Senanayake, C. H.; Song, J. J. Chem. Rev. 2006, 106, 2734.
(d) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
(7) (a) Yang, Z.; Wang, Z.; Bai, S.; Shen, K.; Chen, D.; Liu, X.; Lin,
ꢀ
L.; Feng, X. Chem.;Eur. J. 2010, 16, 6632. (b) Bui, T.; Hernandez-
(2) For selected reviews, see: (a) Hibino, S.; Choshi, T. Nat. Prod.
Rep. 2001, 18, 66. (b) Jensen, B. S. CNS Drug Rev. 2002, 8, 353. (c) Lin,
H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36. (d) Dounay,
A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945. (e) Galliford, C. V.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(3) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
(4) (a) Li, X.; Zhang, B.; Xi, Z.-G.; Luo, S.; Cheng, J.-P. Adv. Synth.
Catal. 2010, 352, 416. (b) Li, X.; Luo, S.; Cheng, J.-P. Chem.;Eur. J.
2010, 16, 14290. (c) Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.;
Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2010, 12, 2896. (d) Shen, K.; Liu,
X.; Zheng, K.; Li, W.; Hu, X.; Lin, L.; Feng, X. Chem.;Eur. J. 2010, 15,
3736. (e) Ding, M.; Zhou, F.; Liu, Y.-L.; Wang, C.-H.; Zhao, X.-L.;
Zhou, J. Chem. Sci. 2011, 2, 2035. (f) Han, Y.-Y.; Wu, Z.-J.; Chen,
W.-B.; Du, X.-L.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2011, 13, 5064.
(g) Li, L.; Chen, W.; Yang, W.; Pan, Y.; Liu, H.; Tan, C.-H.; Jiang, Z.
Chem. Commun. 2012, 48, 5124.
Torres, G.; Milite, C.; Barbas, C. F., III. Org. Lett. 2010, 12, 5696.
(c) Mouri, S.; Chen, Z.; Mitsunuma, H.; Furutachi, M.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 1255. (d) Yang, Z.; Wang,
Z.; Bai, S.; Shen, K.; Chen, D.; Liu, X.; Lin, L.; Feng, X. Chem.;Eur. J.
2010, 16, 6632. (e) Shen, K.; Liu, X.; Wang, G.; Lin, L.; Feng, X. Angew.
Chem., Int. Ed. 2011, 50, 4684.
(8) (a) Bui, T.; Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc.
2010, 132, 5574. (b) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang,
Y.-X.; Wang, C.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176. (c) Zhang,
Z.; Zheng, W.; Antilla, J. C. Angew. Chem., Int. Ed. 2011, 50, 1135.
(9) (a) Dandia, A.; Arya, K.; Sati, M.; Gautam, S. Tetrahedron 2004,
60, 5253. (b) McAllister, L. A.; McCormick, R. A.; Brand, S.; Procter,
D. J. Angew. Chem., Int. Ed. 2005, 44, 452. (c) Miller, M.; Tsang, W.;
Merritt, A.; Procter, D. J. Chem. Commun. 2007, 498. (d) Li, Y.; Shi, Y.;
Huang, Z.; Wu, X.; Xu, P.; Wang, J.; Zhang, Y. Org. Lett. 2011, 13,
1210. (e) Chen, H.; Shi, D. Tetrahedron 2011, 67, 5686.
r
10.1021/ol3021176
Published on Web 08/24/2012
2012 American Chemical Society