ACS Medicinal Chemistry Letters
Letter
(4) Vu, T. K.; Wheaton, V. I.; Hung, D. T.; Charo, I.; Coughlin, S. R.
Domains specifying thrombin-receptor interaction. Nature 1991, 353,
674−677.
compounds (14, 19, and 23b) represented significant efficacy
(IC50 = 0.097, 0.21, and 0.10 μM, each) in the human platelet
rich plasma (PRP) aggregation assay. These results are
comparable to that obtained for vorapaxar (IC50 = 0.12 μM).
In addition to the affinity of the compound for PAR1, the PRP
assay reflects the compound’s physicochemical properties,
including plasma stability. None of the compounds exhibited
cytotoxicity as determined by ATP contents in the HepG2 cell
line; however, the compounds were not stable when incubated
in human and rat liver microsomes. The compounds must be
optimized to improve their metabolic stability.
(5) Chen, J.; Ishii, M.; Wang, L.; Ishii, K.; Coughkin, S. R. J. Biol.
Chem. 1994, 269, 16041−16045.
(6) Zhang, C.; Srinivasan, Y.; Arlow, D. H.; Fung, J. J.; Palmer, D.;
Zheng, Y.; Green, H. F.; Pandey, A.; Pror, R. O.; Shaw, D. E.; Weis, W.
I.; Coughlin, S. R.; Kobilka, B. K. High-resolution crystal structure of
human protease-activated receptor 1. Nature 2012, 492, 387−392.
(7) Chackalamannil, S.; Xia, Y. Thrombin receptor (PAR1)
antagonists as novel antithrombotic agents. Expert Opin. Ther. Pat.
2006, 16, 493−505.
In conclusion, we have identified a novel 6/5 bicycle core,
octahydroindene scaffold that functions as a PAR1 antagonist.
From the SAR studies at the C2 position, it was found that
short and bulky substitution at C2 led to an improvement in
activity. The compounds 14, 19, and 23b were comparably
potent to vorapaxar in PAR1 binding and PRP aggregation
assays. While this series of compounds was generally not
cytotoxic, the compounds were not metabolically stable in
human and mouse liver microsomes. We are currently trying to
optimize the compounds described herein to improve
metabolic stability as well as potency.
(8) Ishii, K.; Hein, L.; Kobilka, B.; Coughlin, S. R. Kinetics of
thrombin receptor cleavage on intact cells. Relations to signaling. J.
Biol. Chem. 1993, 268, 9780−9786.
(9) Trejo, J.; Hammes, S. R.; Coughlin, S. R. Termination of
signaling by protease-activated receptor-1 is linked to lysosomal
dorting. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 13698−13702.
(10) Hein, L.; Ishii, K.; Coughlin, S. R.; Kobilka, B. K. Intracellular
targeting and trafficking of thrombin receptors. A novel mechanism for
resensitization of a G protein-coupled receptor. J. Biol. Chem. 1994,
269, 27719−27726.
(11) Clasby, M. C.; Chackalamannil, S.; Czarniecki, M.; Doller, D.;
Eagen, K.; Greenlee, W.; Kao, G.; Lin, Y.; Tsai, H.; Xia, Y.; Ahan, H.-
S.; Agans-Fantuzzi, J.; Boykow, G.; Chintala, M.; Foster, C.; Smith-
Torhan, A.; Alton, K.; Bryant, M.; Hsieh, Y.; Lau, J.; Palamanda, J.
Metabolism-based indentification of a potent thrombin receptor
antagonist. J. Med. Chem. 2007, 50, 129−138.
(12) Dockendorff, C.; Aisiku, O.; VerPlanl, L.; Dilks, J. R.; Smith, D.
A.; Gunnik, S. F.; Dowal, L.; Negri, J.; Palmer, M.; MacPherson, L.;
Schreiber, S. L.; Flaumenhaft, R. Discovery of 1,3-diaminobenzenes as
selective inhibitors of platelet activation at the PAR1 receptor. ACS
Med. Chem. Lett. 2012, 3, 232−237.
(13) Chackalamannil, S. Thrombin receptor (protease activated
receptor 1) antagonist as potent antithrombotic agents with strong
anti-platelet effects. J. Med. Chem. 2006, 49, 5389−5403.
(14) Chackalamannil, S.; Wang, Y.; Greenlee, W. J.; Hu, J.; Ahn, H.-
S.; Boykow, G.; Hsieh, Y.; Palamanda, J.; Agans-Fantuzzi, J.; Kurowski,
S.; Graziano, M.; Chintala, M. Discovery of a novel, orally active
himbacine-based thrombin receptor antagonist (SCH 530348) with
potent antiplatelet activity. J. Med. Chem. 2008, 51, 3061−3064.
(15) Chackalamannil, S.; Xia, Y.; Greenlee, W. J.; Clasby, M.; Dollar,
D.; Tsai, H.; Asberom, T.; Czarniecki, M.; Ahn, H.-S.; Boykow, G.;
Foster, C.; Agans-Fantuzzi, J.; Bryant, M.; Lau, J.; Chintala, M.
Discovery of potent orally active thrombin receptor (protease
activated recptor 1) antagonists as novel antithrombotic agents. J.
Med. Chem. 2005, 48, 5884−5887.
(16) Xia, Y.; Chackalamannil, S.; Greenlee, W. J.; Wang, Y.; Hu, Z.;
Root, Y.; Wong, J.; Kong, J.; Ahn, H.-S.; Boykow, G.; Hsieh, Y.;
Kurowski, S.; Chintala, M. Discovery of a vorapaxar analog with
increased aquwous solubility. Bioorg. Med. Chem. Lett. 2010, 20, 6676−
36679.
(17) Kosoglou, T.; Reyderman, L.; Tiessen, R. G.; van Vilet, A. A.;
Fales, R. R.; Keller, R.; Yang, V.; Culter, D. L. Pharmacodynamics and
pharmacokinetics of the novel PAR-1 antagonist vorapaxar (formerly
SCH 530348) in healthy subjects. Eur. J. Clin. Pharmacol. 2012, 68,
249−258.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthetic procedures and characterization data; assay protocols.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Funding
This work was supported by the Global Frontier Project grant
NRF-2011-0032185 and the center for Biological Modulator of
the 21st century Frontier R&D program by the Ministry of
Science, ICT, and Future Planning of Korea.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
[3H]−haTRAP (Ala-Phe(p-F)-Arg-ChA-Har-[3H]Tyr-NH2):
Cold peptides were prepared by Peptron (Korea, www.
Moravek, USA.
ABBREVIATIONS
■
PAR1, protease-activated receptor 1; SAR, structure−activity
relationship; HWE, Horner−Wadsworth−Emmons; DIBAL-H,
diisobutylaluminum hydride; haTRAP, high affinity thrombin
receptor activation peptide; IBX, 2-iodobenzoic acid; WPA,
washed platelet aggregation; PRP, platelet rich plasma
(18) Morrow, D. A.; Braunwald, E.; Bonaca, M. P.; Ameriso, S. F.;
Dalby, A. J.; Fish, M. O.; Fox, K. A. A.; Lipka, L. J.; Liu, X.; Nicolau, J.
C.; Theroux, P.; Wiviott, S. D.; Strony, J.; Murphy, S. A. Vorapaxar in
the secondary prevention of atherothrombotic events. N. Engl. J. Med.
2012, 366, 1404−1413.
(19) Chelliah, M. V.; Chackalamannil, S.; Xia, Y.; Eagen, K.;
Greenlee, W. J.; Ahn, H.-S.; Agans-Fantuzzi, J.; Boykow, G.; Hsieh, Y.;
Bryant, M.; Chan, T.-M.; Chintala, M. Discovery of nor-seco
himbacine analogs as thrombin receptor antagonists. Bioorg. Med.
Chem. Lett. 2012, 22, 2544−2549.
REFERENCES
■
(1) Coughlin, S. R. Thrombin signaling and protease-activated
receptors. Nature 2000, 407, 258−264.
(2) Ramachandran, R.; Noorbakhsh, F.; Defea, K.; Hollenberg, M. D.
Targeting protease-activated receptors: therapeutic potential and
challenges. Nat. Rev. Drug Discovery 2012, 11, 69−86.
(3) Coughlin, S. R. Protease-activated receptors in hemostasis,
thrombosis and vascular biology. J. Thromb. Hemost. 2005, 3, 1800−
1814.
1057
dx.doi.org/10.1021/ml400235c | ACS Med. Chem. Lett. 2013, 4, 1054−1058