6 W. Cai, X. Gong and Y. Cao, Sol. Energy Mater. Sol. Cells, 2010, 94,
114–127.
7 Y. Li and Y. Zou, Adv. Mater., 2008, 20, 2952–2958.
8 Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 2009, 109, 5868–
5923.
9 J. Roncali, Macromol. Rapid Commun., 2007, 28, 1761–1775.
10 J. Hou, Z. a. Tan, Y. He, C. Yang and Y. Li, Macromolecules, 2006,
39, 4657–4662.
11 J. Hou, Z. a. Tan, Y. Yan, Y. He, C. Yang and Y. Li, J. Am. Chem.
Soc., 2006, 128, 4911–4916.
12 Y. Zou, W. Wu, G. Sang, Y. Yang, Y. Liu and Y. Li, Macromolecules,
2007, 40, 7231–7237.
13 E. Zhou, Z. a. Tan, L. Huo, Y. He, C. Yang and Y. Li, J. Phys. Chem.
B, 2006, 110, 26062–26067.
14 H. Li, T. L. Tam, Y. M. Lam, S. G. Mhaisalkar and A. C. Grimsdale,
Org. Lett., 2011, 13, 46–49.
15 X. Zhang, T. T. Steckler, R. R. Dasari, S. Ohira, W. J. Potscavage Jr,
excluded as both devices give comparable shunt resistance (Rsh)
of 3.1 ꢁ 10ꢂ2 and 5.7 ꢁ 10ꢂ2 U cm2. This also suggests that the
higher J0 indicates stronger interactions of the p-conjugated
molecules in the pPQ2F : PC[71]BM blend.37 Comparison of
bithienyl and biphenyl substituents reveals that the former is
likely to allow darker recombination processes due to higher
planarity with the core, and hence much lower Voc than expected
in pPQ2F devices. This is also supported by the presence of large
features in the pPQ2F : PC[71]BM blend surface, as planarity
promotes molecular aggregation. Despite the lack of coplanarity
of the substituents to the core in the pPQ1F system, no detri-
mental effects were observed on both exciton diffusion and
charge transport processes, as evidenced from the higher Jsc and
FF in pPQ1F : PC[71]BM devices. The same reasoning can be
used to explain why pTQ2F (J0 ¼ 9.4 ꢁ 10ꢂ5 mA cmꢂ2) shows
almost 0.1 V lower in Voc as compared to pTQ1F (J0 ¼ 2.2 ꢁ
10ꢂ8 mA cmꢂ2) when both of them have similar HOMO energy
levels.
ꢁ
ꢁ
S. P. Tiwari, S. Coppee, S. Ellinger, S. Barlow, J.-L. Bredas,
B. Kippelen, J. R. Reynolds and S. R. Marder, J. Mater. Chem.,
2010, 20, 123–134.
16 M. Chen, X. Crispin, E. Perzon, M. R. Andersson, T. Pullerits,
€
M. Andersson, O. Inganas and M. Berggren, Appl. Phys. Lett.,
2005, 87, 252105.
17 X. Wang, E. Perzon, F. Oswald, F. Langa, S. Admassie,
€
M. R. Andersson and O. Inganas, Adv. Funct. Mater., 2005, 15,
Conclusion
1665–1670.
18 E. Perzon, F. Zhang, M. Andersson, W. Mammo, O. Inganas and
€
In conclusion, we have demonstrated the effects of aromatic
substituents on the photophysical properties, morphology and
OPV device performance of BBT, TQ and PQ polymers. The
bithienyls in pTQ2F and pPQ2F offer a lower bandgap and
broader light absorption via higher conjugation as compared to
the biphenyls in pTQ1F and pPQ1F. Even though these prop-
erties are generally beneficial for device performance, they are at
the expense of a higher HOMO and a larger dark current which
result in a lower Voc, and lower LUMO which provides a lesser
driving force to overcome exciton binding energy. The lower
ratio of face-on configuration and the higher reverse saturation
current in the former also appear to be more detrimental to the
device performance in terms of the lower Jsc and Voc, respec-
tively. These results provide some insight into polymeric mate-
rials with conjugated side chains for OPV applications and also
help in the design of new materials with low bandgap and broad
light absorption.
M. R. Andersson, Adv. Mater., 2007, 19, 3308–3311.
19 A. P. Zoombelt, M. Fonrodona, M. M. Wienk, A. B. Sieval,
J. C. Hummelen and R. A. J. Janssen, Org. Lett., 2009, 11, 903–906.
20 Y. Lee, T. P. Russell and W. H. Jo, Org. Electron., 2010, 11, 846–
853.
21 F. Zhang, J. Bijleveld, E. Perzon, K. Tvingstedt, S. Barrau,
O. Inganas and M. R. Andersson, J. Mater. Chem., 2008, 18, 5468–
5474.
22 A. P. Zoombelt, M. Fonrodona, M. G. R. Turbiez, M. M. Wienk and
R. A. J. Janssen, J. Mater. Chem., 2009, 19, 5336–5342.
23 E. Wang, L. Hou, Z. Wang, S. Hellstrom, W. Mammo, F. Zhang,
O. Inganas and M. R. Andersson, Org. Lett., 2010, 12, 4470–4473.
24 T. L. Tam, H. Li, F. Wei, K. J. Tan, C. Kloc, Y. M. Lam,
S. G. Mhaisalkar and A. C. Grimsdale, Org. Lett., 2010, 12, 3340–
3343.
25 T. L. Tam, F. Zhou, H. Li, J. C. Y. Pang, Y. M. Lam,
S. G. Mhaisalkar, H. Su and A. C. Grimsdale, J. Mater. Chem.,
2011, 21, 17798–17804.
26 C.-L. Pai, C.-L. Liu, W.-C. Chen and S. A. Jenekhe, Polymer, 2006,
47, 699–708.
27 W.-C. Wu and W.-C. Chen, J. Polym. Res., 2006, 13, 441–449.
28 J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A. J. Heeger and
F. Wudl, J. Am. Chem. Soc., 2011, 133, 20799–20807.
29 J. D. Yuen, R. Kumar, D. Zakhidov, J. Seifter, B. Lim, A. J. Heeger
and F. Wudl, Adv. Mater., 2011, 23, 3780–3785.
Acknowledgements
This work was supported financially by Robert Bosch (SEA) Pte
Ltd. We would like to thank Miss Fan Shufen, Miss Tay Qiuling,
and Miss Liu Weiling (NTU MSE) for helpful discussions on the
XRD results.
30 S. Miao, P. v. R. Schleyer, J. I. Wu, K. I. Hardcastle and
U. H. F. Bunz, Org. Lett., 2007, 9, 1073–1076.
31 T. Dallos, D. Beckmann, G. Brunklaus and M. Baumgarten, J. Am.
Chem. Soc., 2011, 133, 13898–13901.
32 X. Wang, Y. Zhou, T. Lei, N. Hu, E.-Q. Chen and J. Pei, Chem.
Mater., 2010, 22, 3735–3745.
33 W. Porzio, G. Scavia, L. Barba, G. Arrighetti and S. Milita, Eur.
Polym. J., 2011, 47, 273–283.
34 E. Orgiu, A. M. Masillamani, J.-O. Vogel, E. Treossi, A. Kiersnowski,
Notes and references
1 C. Winder and N. S. Sariciftci, J. Mater. Chem., 2004, 14, 1077–1086.
2 E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2007,
91, 954–985.
€
M. Kastler, W. Pisula, F. Dotz, V. Palermo and P. Samorı, Chem.
Commun., 2012, 48, 1562–1564.
ꢂ
35 C. W. Schlenker and M. E. Thompson, Chem. Commun., 2011, 47,
3702–3716.
3 R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom and B. d. Boer,
Polym. Rev., 2008, 48, 531–582.
36 P. Erwin and M. E. Thompson, Appl. Phys. Lett., 2011, 98, 223305.
37 M. D. Perez, C. Borek, S. R. Forrest and M. E. Thompson, J. Am.
Chem. Soc., 2009, 131, 9281–9286.
4 J. Chen and Y. Cao, Acc. Chem. Res., 2009, 42, 1709–1718.
5 M. Helgesen, R. Søndergaard and F. C. Krebs, J. Mater. Chem., 2010,
20, 36–60.
18534 | J. Mater. Chem., 2012, 22, 18528–18534
This journal is ª The Royal Society of Chemistry 2012