is 4.0 ꢁ 109 M between 1 and the A-site of 16S rRNA. This result
indicates two molecules of 1 bind to the same A-site of 16S rRNA,
which agrees with the recently reported crystal structures of the
interaction between the ribosomal subunit and aminoglycoside
antibiotics12,14 that reveals two aminoglycosides to bind to the
same A site of 16S rRNA.12 The association constant is much
higher than the binding constant of kanamycin with 16S rRNA
(5.6 ꢁ 105 M),16 suggesting cooperative binding.
The authors acknowledge the partial financial support
from NIH (R01CA142746), HFSP, and a start-up fund from
Brandeis University and thank the assistance of Brandeis EM
facility.
Notes and references
1 L. Brunton, J. Lazo, K. Parker, I. Buxton and D. Blumenthal, The
Pharmacological Basis of Therapeutics, McGraw-Hill, New York,
2005.
To verify whether the hydrogel of 1 is able to bind selectively
to the 16S rRNA, we extracted total RNAs from E. coli and
added the solution containing total RNAs on the top of the
hydrogel of 1. Gel electrophoresis shows that 5S, 16S and 23S
rRNA are the major components of the total RNAs (Fig. S2w),
in which the initial ratio of 16S : 23S : 5S rRNA is about
1 : 1 : 8. The large quantity of 5S rRNA in the total RNA,
together with 23S rRNA, serves as a useful control. After being
incubated with the hydrogel of 1 for 4 h, the amounts of RNAs
in the supernatant decrease due to the absorption of RNA in the
hydrogel of 1, as indicated by gel electrophoresisw. Quantitative
analysis of the RNA bands in Fig. 3B confirms that 20% of 16S
rRNA and 70% of 23S rRNA remain in the supernatant.
Despite the initial amount of 5S rRNA being about eight times
of that of 16S rRNA (or 23S rRNA), 70% of 5S rRNA remains
in the supernatant. This result suggests that the hydrogel of 1
selectively sequesters 16S rRNA. Because only 30% of 5S
sRNAw undergoes uptake by the hydrogel of 1 (though the size
of 5S rRNA is much smaller and the quantity of 5S rRNA in the
total RNA much larger than those of 16S rRNA), the observed
selectivity is unlikely to arise from the smaller size of 16S rRNA
compared to 23S rRNA. Rather, the above results clearly
indicate that 1 binds to the A-site of 16S rRNA, thus leading
to the hydrogel of 1 binding selectively to 16S rRNA. If the
hydrogel of 1 bound extracted RNAs via only electrostatic
attractions, the hydrogel of 1 would bind 23S rRNA that carries
the most negative charges among the extracted RNAs. Therefore,
the hydrogel of 1 selectively binds 16S rRNA, which also indicates
that the derivatization at the N60 position is unlikely to completely
eliminate the binding of 1 to the A-site of 16S rRNA. Thus, we
suggest that the self-assembled molecules of 1 to bind with 16S
rRNA as shown in Fig. 2B, which is a possible interaction of 1 with
the A-site of 16S rRNA derived from the binding of kanamycin to
the RNA groove without involving the ammonium N60.12
Although the suggested model in Fig. 2B agrees with the 2 : 1
stoichiometry (between 1 and the A-site of 16S rRNA) obtained
from Fig. 3A, the atomistic description of the interactions between 1
and the A-site of 16S rRNA has yet to be established.
2 L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104,
1201.
3 L. A. Estroff and A. D. Hamilton, Angew. Chem., Int. Ed., 2000,
39, 3447; J. H. Jung, G. John, M. Masuda, K. Yoshida, S. Shinkai
and T. Shimizu, Langmuir, 2001, 17, 7229; M. Suzuki, M. Yumoto,
M. Kimura, H. Shirai and K. Hanabusa, Chem. Commun., 2002,
884.
4 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133.
5 F. Zhao, M. L. Ma and B. Xu, Chem. Soc. Rev., 2009, 38, 883.
6 R. J. Williams, R. J. Mart and R. V. Ulijn, Biopolymers, 2010,
94, 107; R. V. Ulijn, B. Baragana, P. J. Halling and S. L. Flitsch,
J. Am. Chem. Soc., 2002, 124, 10988; R. J. Williams, A. M. Smith,
R. Collins, N. Hodson, A. K. Das and R. V. Ulijn, Nat. Nanotechnol.,
2008, 4, 19; S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato
and I. Hamachi, Nat. Mater., 2003, 3, 58; D. J. Adams and
P. D. Topham, Soft Matter, 2010, 6, 3707; N. M. Sangeetha and
U. Maitra, Chem. Soc. Rev., 2005, 34, 821.
7 C. Q. Yan and D. J. Pochan, Chem. Soc. Rev., 2010, 39, 3528.
8 B. G. Xing, P. L. Ho, C. W. Yu, K. H. Chow, H. W. Gu and B. Xu,
Chem. Commun., 2003, 2224.
9 B. G. Xing, C. W. Yu, K. H. Chow, P. L. Ho, D. G. Fu and B. Xu,
J. Am. Chem. Soc., 2002, 124, 14846.
10 G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. Harrington,
J. A. Kessler and S. I. Stupp, Science, 2004, 303, 1352; S. Toledano,
R. J. Williams, V. Jayawarna and R. V. Ulijn, J. Am. Chem. Soc.,
2006, 128, 1070; J. Gao, H. M. Wang, L. Wang, J. Y. Wang,
D. L. Kong and Z. M. Yang, J. Am. Chem. Soc., 2009, 131, 11286;
J. P. Schneider, D. J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis
and J. Kretsinger, J. Am. Chem. Soc., 2002, 124, 15030;
C. M. Micklitsch, P. J. Knerr, M. C. Branco, R. Nagarkar,
D. J. Pochan and J. P. Schneider, Angew. Chem., Int. Ed., 2011,
50, 1577.
11 Y. Gao, Y. Kuang, Z. F. Guo, Z. H. Guo, I. J. Krauss and B. Xu,
J. Am. Chem. Soc., 2009, 131, 13576; H. M. Wang, C. H. Yang,
L. Wang, D. L. Kong, Y. J. Zhang and Z. M. Yang, Chem.
Commun., 2011, 47, 4439.
12 B. Francois, R. J. M. Russell, J. B. Murray, F. Aboul-ela,
B. Masquida, Q. Vicens and E. Westhof, Nucleic Acids Res.,
2005, 33, 5677.
13 Y. Zhang, Y. Kuang, Y. A. Gao and B. Xu, Langmuir, 2011,
27, 529.
14 A. P. Carter, W. M. Clemons, D. E. Brodersen, R. J. Morgan-
Warren, B. T. Wimberly and V. Ramakrishnan, Nature, 2000,
407, 340.
15 D. M. Chipman, V. Grisaro and N. Sharon, J. Biol. Chem., 1967,
242, 4388.
16 M. Misumi, T. Nishimura, T. Komai and N. Tanaka, Biochem.
Biophys. Res. Commun., 1978, 84, 358.
17 Y. Gao, M. J. C. Long, J. F. Shi, L. Hedstrom and B. Xu, Chem.
Commun., 2012, 48, 8404.
In summary, we have designed and synthesized novel molecular
hydrogelators based on kanamycin A and demonstrated a feasible
approach to explore the potential targets of supramolecular
nanofibers/hydrogels. One potential practical application of this
hydrogel of kanamycin would be the enrichment of 16S rRNA
from cell lysates for typing bacteria. However, the selectivity of the
gel towards 16S remains to be improved, possibly by designing
and screening new kanaymicin containing hydrogelators. The
principle illustrated in this work should help identify new targets of
supramolecular nanostructures,17 which may lead to new insights
or phenomena that are inaccessible by an individual molecule.18
Our future works will focus on the modifications of other amino-
functions of kanamycin A and other aminoglycosides.
18 Z. L. Wu, T. Kurokawa, S. Liang, H. Furukawa and J. P. Gong,
J. Am. Chem. Soc., 2010, 132, 10064; P. Casuso, P. Carrasco,
I. Loinaz, H. J. Grande and I. Odriozola, Org. Biomol. Chem.,
2010, 8, 5455; N. Kameta, K. Yoshida, M. Masuda and
T. Shimizu, Chem. Mater., 2009, 21, 5892; G. M. Price,
K. K. Chu, J. G. Truslow, M. D. Tang-Schomer, A. P. Golden,
J. Mertz and J. Tien, J. Am. Chem. Soc., 2008, 130, 6664;
M. D. Tang, A. P. Golden and J. Tien, Adv. Mater., 2004,
16, 1345; J. F. Lovell, A. Roxin, K. K. Ng, Q. C. Qi,
J. D. McMullen, R. S. DaCosta and G. Zheng, Biomacromolecules,
2011, 12, 3115; G. L. Liang, H. J. Ren and J. H. Rao, Nat. Chem.,
2009, 2, 54; S. W. Choi, Y. Zhang and Y. N. Xia, Angew. Chem.,
Int. Ed., 2010, 49, 7904.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 9257–9259 9259