[I > 2σ(I)]; maximal residual electron density: 0.971 e Å−3. CCDC
883858.
14 (a) T.-S. Wu, S.-C. Huang, P.-L. Wu and C.-M. Teng, Phytochemistry,
1996, 43, 133; (b) T.-S. Wu, S.-C. Huang, P.-L. Wu and C.-S. Kuoh,
Phytochemistry, 1999, 52, 523.
15 T.-S. Wu, T. Ohta, H. Furukawa and C.-S. Kuoh, Heterocycles, 1983, 20,
1267.
16 (a) H. Furukawa, T.-S. Wu, T. Ohta and C.-S. Kuoh, Chem. Pharm. Bull.,
1985, 33, 4132; (b) H. Furukawa, C. Ito, T.-S. Wu and A. T. McPhail,
Chem. Pharm. Bull., 1993, 41, 1249.
17 (a) Y.-C. Kong, K.-F. Cheng, K.-H. Ng, P. P.-H. But, Q. Li, S.-X. Yu,
H.-T. Chang, R. C. Cambie, T. Kinoshita, W.-S. Kan and P. G. Waterman,
Biochem. Syst. Ecol., 1986, 14, 491; (b) Y.-C. Kong, K.-H. Ng,
P. P.-H. But, Q. Li, S.-X. Yu, H.-T. Zhang, K.-F. Cheng, D. D. Soejarto,
W.-S. Kan and P. G. Waterman, J. Ethnopharmacol., 1986, 15, 195.
18 N. H. A. Bakar, M. A. Sukari, M. Rahmani, A. M. Sharif, K. Khalid and
U. K. Yusuf, Mal. J. Anal. Sci., 2007, 11, 173.
kSpectroscopic data for bismurrayafoline-A (3): colourless crystals, mp
209.5–210 °C from petroleum ether–EtOAc (ref. 11: 176–177 °C from
Et2O); UV (MeOH): λ = 224, 243, 251, 262 (sh), 282, 292, 323 (sh),
338, 352 (sh) nm; IR (ATR): ν = 3434, 3051, 3015, 2965, 2927, 2843,
1727, 1626, 1582, 1542, 1502, 1451, 1393, 1341, 1299, 1258, 1227,
1211, 1146, 1119, 1104, 1037, 1012, 942, 827, 764, 746, 730, 657, 640,
618 cm−1; 1H NMR (500 MHz, CDCl3): δ = 2.52 (s, 3 H), 3.80 (s, 3 H),
3.91 (s, 3 H), 5.97 (s, 2 H), 6.77 (d, J = 0.6 Hz, 1 H), 6.77 (d, J = 0.9
Hz, 1 H), 7.11–7.18 (m, 2 H), 7.31–7.36 (m, 2 H), 7.36–7.43 (m, 2 H),
7.48 (s, 1 H), 7.53 (s, 1 H), 7.91 (d, J = 7.9 Hz, 1 H), 8.03 (d, J = 7.9
Hz, 1 H), 8.14 (br s, 1 H); 13C NMR and DEPT (125 MHz, CDCl3): δ =
21.85 (CH3), 49.59 (CH2), 55.53 (CH3), 55.89 (CH3), 105.10 (CH),
109.28 (CH), 109.84 (CH), 110.93 (CH), 111.03 (CH), 112.92 (CH),
118.93 (CH), 119.36 (CH), 120.27 (CH), 120.70 (CH), 123.29 (C),
123.62 (C), 124.15 (C), 125.11 (C), 125.65 (CH), 125.74 (CH), 128.55
(C), 129.02 (C), 129.21 (C), 131.48 (C), 139.48 (C), 141.53 (C), 145.76
(C), 146.80 (C); MS (EI): m/z (%) = 420.2 (M+, 40), 211.1 (39), 210.2
(100), 196.1 (6), 180.1 (5), 167.1 (14); HRMS: m/z calc. for
19 H.-J. Knölker and M. Bauermeister, J. Chem. Soc., Chem. Commun.,
1990, 664.
20 (a) H.-J. Knölker and M. Bauermeister, Tetrahedron, 1993, 49, 11221;
(b) H.-J. Knölker and M. Wolpert, Tetrahedron Lett., 1997, 38, 533;
(c) H.-J. Knölker and M. Wolpert, Tetrahedron, 2003, 59, 5317.
21 C. Börger, M. P. Krahl, M. Gruner, O. Kataeva and H.-J. Knölker, Org.
Biomol. Chem., 2012, 10, 5189.
C
28H24N2O2 (M+): 420.1838; found: 420.1824.
22 (a) E. Brenna, C. Fuganti and S. Serra, Tetrahedron, 1998, 54, 1585;
(b) G. Bringmann, S. Tasler, H. Endress, K. Peters and E.-M. Peters, Syn-
thesis, 1998, 1501; (c) A. Zempoalteca and J. Tamariz, Heterocycles,
2002, 57, 259; (d) A. Kuwahara, K. Nakano and K. Nozaki, J. Org.
Chem., 2005, 70, 413; (e) L.-C. Campeau, M. Parisien, A. Jean and
K. Fagnou, J. Am. Chem. Soc., 2006, 128, 581; (f) Z. Liu and
R. C. Larock, Tetrahedron, 2007, 63, 347; (g) B. Liégault, D. Lee,
M. P. Huestis, D. R. Stuart and K. Fagnou, J. Org. Chem., 2008, 73,
5022; (h) W. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng and
S. L. Buchwald, J. Org. Chem., 2008, 73, 7603; (i) S. Tohyama,
T. Choshi, S. Azuma, H. Fujioka and S. Hibino, Heterocycles, 2009, 79,
955.
23 (a) D. P. Chakraborty, B. K. Barman and P. K. Bose, Tetrahedron, 1965,
21, 681; (b) D. P. Chakraborty and B. K. Chowdhury, J. Org. Chem.,
1968, 33, 1265; (c) T. Martin and C. J. Moody, Tetrahedron Lett., 1985,
26, 5841; (d) T. Martin and C. J. Moody, J. Chem. Soc., Perkin Trans. 1,
1988, 235; (e) C. J. Moody, Synlett, 1994, 681; (f) G. Bringmann,
A. Ledermann and G. François, Heterocycles, 1995, 40, 293;
(g) Y. Murakami, H. Yokoo and T. Watanabe, Heterocycles, 1998, 49,
127; (h) Y. Aoki, Y. Saito, T. Sakamoto and Y. Kikugawa, Synth.
Commun., 2000, 30, 131; (i) Y. Kikugawa, Y. Aoki and T. Sakamoto,
J. Org. Chem., 2001, 66, 8612; ( j) T. L. Scott, PhD thesis, West Virginia
University, 2001; (k) A. Benavides, J. Peralta, F. Delgado and J. Tamariz,
Synthesis, 2004, 2499; (l) V. Sridharan, M. A. Martín and
J. C. Menéndez, Synlett, 2006, 2375; (m) D. Mal, B. Senapati and
P. Pahari, Tetrahedron Lett., 2006, 47, 1071; (n) L. Ackermann and
A. Althammer, Angew. Chem., 2007, 119, 1652, (Angew. Chem., Int. Ed.,
2007, 46, 1627); (o) D. Mal, B. K. Senapati and P. Pahari, Tetrahedron,
2007, 63, 3768.
24 M. Watanabe, M. Nishiyama, T. Yamamoto and Y. Koie, Tetrahedron
Lett., 2000, 41, 481.
25 (a) N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Campagna,
B. Verheyde, A. Hameurlaine and W. Dehaen, J. Am. Chem. Soc., 2003,
125, 5356; (b) H. Zhang, S. Wang, Y. Li, B. Zhang, C. Du, X. Wan and
Y. Chen, Tetrahedron, 2009, 65, 4455.
26 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.
27 M. Pons and O. Millet, Prog. Nucl. Magn. Reson. Spectrosc., 2001, 38,
267.
28 H.-J. Knölker, W. Fröhner and R. Heinrich, Synlett, 2004, 2705.
29 (a) C. A. Knueppel, Ber. Deutsch. Chem. Ges., 1896, 29, 703;
(b) B. Yadagiri and J. W. Lown, Synth. Commun., 1990, 20, 955;
(c) M. L. S. Cristiano, D. J. P. Gago, A. M. d’A. Rocha Gonsalves,
R. A. W. Johnstone, M. McCarron and J. M. T. B. Varejão, Org. Biomol.
Chem., 2003, 1, 565.
1 (a) H.-J. Knölker and K. R. Reddy, Chem. Rev., 2002, 102, 4303;
(b) H.-J. Knölker and K. R. Reddy, in The Alkaloids, ed. G. A. Cordell,
Academic Press, Amsterdam, 2008, vol. 65, p. 1; (c) A. W. Schmidt,
K. R. Reddy and H.-J. Knölker, Chem. Rev., 2012, 112, 3193.
2 (a) H.-J. Knölker, Top. Curr. Chem., 2005, 244, 115; (b) I. Bauer and
H.-J. Knölker, Top. Curr. Chem., 2012, 309, 203.
3 Iron-mediated synthesis, reviews: (a) H.-J. Knölker, Synlett, 1992, 371;
(b) H.-J. Knölker, Chem. Soc. Rev., 1999, 28, 151; recent applications:
(c) R. Czerwonka, K. R. Reddy, E. Baum and H.-J. Knölker, Chem.
Commun., 2006, 711; (d) K. E. Knott, S. Auschill, A. Jäger and
H.-J. Knölker, Chem. Commun., 2009, 1467; (e) K. K. Gruner,
T. Hopfmann, K. Matsumoto, A. Jäger, T. Katsuki and H.-J. Knölker,
Org. Biomol. Chem., 2011, 9, 2057–2061; (f) C. Thomas, O. Kataeva
and H.-J. Knölker, Synlett, 2011, 2663.
4 Palladium-catalysed synthesis, reviews: (a) H.-J. Knölker, Curr. Org.
Synth., 2004, 1, 309; (b) H.-J. Knölker, Chem. Lett., 2009, 38, 8; appli-
cations: (c) H.-J. Knölker and N. O’Sullivan, Tetrahedron, 1994, 50,
10893; (d) H.-J. Knölker and W. Fröhner, J. Chem. Soc., Perkin Trans. 1,
1998, 173; (e) H.-J. Knölker, K. R. Reddy and A. Wagner, Tetrahedron
Lett., 1998, 39, 8267; (f) H.-J. Knölker, W. Fröhner and K. R. Reddy,
Synthesis, 2002, 557; (g) H.-J. Knölker and K. R. Reddy, Heterocycles,
2003, 60, 1049; (h) M. P. Krahl, A. Jäger, T. Krause and H.-J. Knölker,
Org. Biomol. Chem., 2006, 4, 3215; (i) R. Forke, M. P. Krahl, T. Krause,
G. Schlechtingen and H.-J. Knölker, Synlett, 2007, 268; ( j) C. Börger
and H.-J. Knölker, Synlett, 2008, 1698; (k) R. Forke, A. Jäger and
H.-J. Knölker, Org. Biomol. Chem., 2008, 6, 2481; (l) R. Forke,
M. P. Krahl, F. Däbritz, A. Jäger and H.-J. Knölker, Synlett, 2008, 1870;
(m) K. K. Gruner and H.-J. Knölker, Org. Biomol. Chem., 2008, 6, 3902;
(n) M. Schmidt and H.-J. Knölker, Synlett, 2009, 2421;
(o) M. Fuchsenberger, R. Forke and H.-J. Knölker, Synlett, 2011, 2056;
(p) T. Gensch, M. Rönnefahrt, R. Czerwonka, A. Jäger, O. Kataeva,
I. Bauer and H.-J. Knölker, Chem.–Eur. J., 2012, 18, 770; (q) L. Huet,
R. Forke, A. Jäger and H.-J. Knölker, Synlett, 2012, 23, 1230;
(r) C. Börger and H.-J. Knölker, Tetrahedron, 2012, 68, 6727.
5 (a) D. P. Chakraborty and S. Roy, in Progress in the Chemistry of
Organic Natural Products, ed. W. Herz, H. Grisebach, G. W. Kirby,
W. Steglich and C. Tamm, Springer-Verlag, Wien, 1991, vol. 57, p. 71;
(b) D. P. Chakraborty, in The Alkaloids, ed. G. A. Cordell, Academic
Press, New York, 1993, vol. 44, p. 257.
6 (a) H. Furukawa, Trends Heterocycl. Chem., 1993, 3, 185; (b) S. Tasler
and G. Bringmann, Chem. Rec., 2002, 2, 113.
7 C. Ito, T.-S. Wu and H. Furukawa, Chem. Pharm. Bull., 1990, 38, 1143.
8 (a) T. Kitawaki, Y. Hayashi and N. Chida, Heterocycles, 2005, 65, 1561;
(b) T. Kitawaki, Y. Hayashi, A. Ueno and N. Chida, Tetrahedron, 2006,
62, 6792.
30 (a) F. Ullmann, Ber. Deutsch. Chem. Ges., 1903, 36, 2382;
(b) F. Ullmann, Ber. Deutsch. Chem. Ges., 1904, 37, 853; (c) I. Goldberg,
Ber. Deutsch. Chem. Ges., 1906, 39, 1691; (d) S. V. Ley and
A. W. Thomas, Angew. Chem., 2003, 115, 5558, (Angew. Chem., Int. Ed.,
2003, 42, 5400).
9 C. Ito, Y. Thoyama, M. Omura, I. Kajiura and H. Furukawa, Chem.
Pharm. Bull., 1993, 41, 2096.
10 G. Bringmann, S. Tasler, H. Endress, J. Kraus, K. Messer, M. Wohlfarth
and W. Lobin, J. Am. Chem. Soc., 2001, 123, 2703.
31 (a) S. Ranjit, R. Lee, D. Heryadi, C. Shen, J. Wu, P. Zhang, K.-W. Huang
and X. Liu, J. Org. Chem., 2011, 76, 8999; (b) Review:
A. E. Wendtlandt, A. M. Suess and S. S. Stahl, Angew. Chem., 2011,
123, 11256, (Angew. Chem., Int. Ed., 2011, 50, 11062).
11 H. Furukawa, T.-S. Wu and T. Ohta, Chem. Pharm. Bull., 1983, 31, 4202.
12 G. Bringmann and S. Tasler, Tetrahedron, 2001, 57, 2337.
13 D. P. Chakraborty, P. Bhattacharyya, S. Roy, S. P. Bhattacharyya and
A. K. Biswas, Phytochemistry, 1978, 17, 834.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 7269–7273 | 7273