Hu et al.
COMMUNICATION
(b) Fluorine in Pharmaceutical and Medicinal Chemistry: From Bi-
ophysical Aspects to Clinical Applications, Eds.: Gouverneur, V.;
Müller, K., Imperial College Press, London, 2012; (c) Fluorine in
Medicinal Chemistry and Chemical Biology, Ed.: Ojima, I.,
Wiley-Blackwell, West Sussex, 2009.
Acknowledgement
Support of this work by the National Basic Research
Program of China (Nos. 2015CB931900 and
2012CB821600), the National Natural Science Founda-
tion of China (Nos. 21372246, 21421002 and
21472221), Shanghai Science and Technology program
(No. 15XD1504400), the Chinese Academy of Sciences,
and MSD China R&D Postdoc Fellowship (to H.M.) is
gratefully acknowledged.
[2] (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactiv-
ity, Applications, John Wiley & Sons, 2004; (b) Tomashenko, O. A.;
Grushin, V. V. Chem. Rev. 2011, 111, 4475; (c) Furuya, T.; Kamlet,
A. S.; Ritter, T. Nature 2011, 473, 470.
[3] (a) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909; (b)
Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.;
Buchwald, S. L. Science 2010, 328, 1679; (c) Wang, X.; Truesdale,
L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.
Experimental
[4] (a) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50,
9120; (b) Chu, L.; Qing, F.-L. Org. Lett. 2012, 14, 2106; (c) Mizuta,
S.; Galicia-López, O.; Engle, K. M.; Verhoog, S.; Wheelhouse, K.;
Rassias, G.; Gouverneur, V. Chem.-Eur. J. 2012, 51, 8583; (d) Ka-
wai, H.; Furukawa, T.; Nomura, Y.; Tokunaga, E.; Shibata, N. Org.
Lett. 2011, 13, 3596; (e) Langlois, B. R.; Laurent, E.; Roidot, N.
Tetrahedron Lett. 1992, 33, 1291; (f) Kirij, N. V.; Pasenok, S. V.;
Yagupolskii, Y. L.; Tyrra, W.; Naumann, D. J. Fluorine Chem. 2000,
106, 217; (g) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc.
2010, 132, 4986; (h) Deng, Q.-H.; Wadepohl, H.; Gade, L. H. J. Am.
Chem. Soc. 2012, 134, 10769; (i) Ge, G.; Huang, X.; Ding, C.; Li, H.;
Wan, S.; Hou, X. Chin. J. Chem. 2014, 32, 727; (j) Deng, X.; Lin, J.;
Zheng, J.; Xiao, J. Chin. J. Chem. 2014, 32, 689.
Typical procedures for D2O-promoted deuterotri-
fluoromethylation of α‑diazo esters (Table 2)
In a glovebox, to an oven-dried 25-mL Schlenk tube
equipped with a stir bar were added CuI (143 mg, 0.75
mmol) and CsF (125 mg, 0.825 mmol). Then the
Schlenk tube was sealed with a septum and brought to
the bench. TMSCF3 (117 mg, 0.825 mmol) in NMP (3
mL) was added via syringe. After stirring at room tem-
perature for 10 min, ethyl 2-diazo-2-phenylacetate (1a)
(95 mg, 0.5 mmol) in NMP (3 mL) was added, then D2O
(0.54 mL, 30 mmol) was added. The resulting mixture
was heated to 40 ℃ and stirred under N2 atmosphere
for 11 h. After the addition of 5-10 mL HCl (1 mol/L),
the mixture was extracted with Et2O (15 mL×3). The
combined organic layer was washed with H2O (20 mL
×2), then brine (20 mL), dried over MgSO4 and con-
centrated in vacuo. The residue was purified by chro-
matography on silica gel (petroleum ether/AcOEt, 30∶
1, V/V) to afford 4a (105 mg, 90% yield) as a yellow oil.
1H NMR (300 MHz, CDCl3/TMS) δ: 7.45-7.40 (m,
5H), 4.34-4.18 (m, 2H), 1.26 (t, J=6.9 Hz, 3H); 19F
NMR (282 MHz, CDCl3/CFCl3) δ: 67.5 (s, 3F); 13C
NMR (100 MHz, CDCl3/TMS) δ: 166.2, 129.4, 129.2,
128.9, 123.8 (q, J=280.4 Hz), 62.0, 13.8; IR (film) ν:
3068, 2986, 1748, 1453, 1369, 1262, 1198, 1166, 1052,
700 cm1; MS (EI, m/z): 233 (M+, 32.39), 160 (100.00).
HRMS (EI): exact mass calcd for C11H10DF3O2 (M+):
233.0774, found 233.0779.
[5] (a) Wiberg, K. B. Chem. Rev. 1955, 55, 713; (b) Westheimer, F. H.
Chem. Rev. 1961, 61, 265.
[6] (a) Jamin, E.; Guérin, R.; Rétif, M.; Lees, M.; Martin, G. J. J. Agric.
Food Chem. 2003, 51, 5202; (b) Treiman, A. H.; Gleason, J. D.;
Bogard, D. D. Planet. Space Sci. 2000, 48, 1213.
[7] (a) Zolotarev, Y. A.; Dadayan, A. K.; Borisov, Y. A.; Kozik, V. S.
Chem. Rev. 2010, 110, 5425; (b) Shevchenko, V. P.; Razzhivina, I.
A.; Chernysheva, M. G.; Badun, G. A.; Nagaev, I. Y.; Shevchenko,
K. V.; Myasoedov, N. F. Radiochemistry 2015, 57, 312.
[8] Hu, M.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2012, 134, 15257.
[9] (a) Hu, M.; He, Z.; Gao, B.; Li, L.; Ni, C.; Hu, J. J. Am. Chem. Soc.
2013, 135, 17302; (b) Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Wu, G.;
Zhang, Y.; Wang, J. Org. Lett. 2015, 17, 2474.
[10] (a) Hu, M.; Rong, J.; Miao, W.; Ni, C.; Han, Y.; Hu, J. Org. Lett.
2014, 16, 2030; (b) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.;
Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2014, 3093; (c) Lefebvre, Q.;
Fava, E.; Nikolaienkoa, P.; Rueping, P. Chem. Commun. 2014, 50,
6617.
[11] Hu, M. Ph.D. Dissertation, Shanghai Institute of Organic Chemistry
& University of Chinese Academy of Sciences, Shanghai, 2013 (in
Chinese).
References
[12] Wang, C.; Ye, F.; Wu, C.; Zhang, Y.; Wang, J. J. Org. Chem. 2015,
80, 8748.
[1] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881;
(Cheng, F.)
472
© 2016 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2016, 34, 469—472