Journal of the American Chemical Society
Page 4 of 5
see: (d) Mizuta, S.; Galicia-López, O.; Engle, K. M.; Verhoog, S.;
Wheelhouse, K.; Rassias, G.; Gouverneur, V. Chem. Eur. J. 2012, 51,
8583; and references therein.
Although we could not rule out the formation of complex 10,
11 is less likely involved in this water-promoted
trifluoromethylation reaction as we did not observe any
intramolecular cyclopropanation byproduct in the case of C=C
bond-containing α-diazo ester 1r.
1
2
3
4
(5)
For
examples
of
Cu-mediated/catalyzed
benzylic
trifluoromethylation, see: (a) Kawai, H.; Furukawa, T.; Nomura, Y.;
Tokunaga, E.; Shibata, N. Org. Lett. 2011, 13, 3596; and references
therein. (b) See Ref. 3e.
In summary, we disclosed
a mild copper-mediated
5
6
7
8
trifluoromethylation of α-diazo esters with TMSCF3 to give
α-trifluoromethyl esters, which represents the first
fluoroalkylation of a non-fluorinated carbene precursor. Water
acts as an efficient activating agent in promoting the reaction
(6) For examples on Cu-mediated/catalyzed α-trifluoromethylation
of aldehydes and ketones, see: (a) Bernard R. Langlois, Eliane
Laurent, Nathalie Roidot Tetrahedron Lett. 1992, 33, 1291. (b) Kirij,
N.V.; Pasenok, S.V.; Yagupolskii, Yu. L.; Tyrra, W.; Naumann D. J.
Fluorine Chem. 2000, 106, 217. (c) Allen, A. E.; MacMillan, D.W. C.
J. Am. Chem. Soc. 2010, 132, 4986.
(7) Very recently, a Cu-catalyzed electrophilic trifluoromethylation
of β-ketoesters for the construction of quaternary carbon centers was
reported, see: Deng, Q.-H.; Wadepohl, H.; Gade, L. H. J. Am. Chem.
Soc. 2012, 134, 10769.
9
with
trifluoromethylcopper
species
prepared
from
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
CuI/TMSCF3/CsF (1:1.1:1.1). We propose that the hydration
of iodide ion facilitates the formation of the intermediate
α-diazo ester-coordinated trifluoromethylcopper 8, and then
the reaction occurs via N2-extrusion and subsequent migratory
insertion of the carbene ligand into the Cu–CF3 bond. This
reaction is applicable for α-aryl, α-benzyl, and α-alkyl diazo
esters and tolerates bromo, chloro, fluoro, ether and double
bond functionalities. Not only does our present work offer a
simple and general way to introduce CF3 group into α-position
of structurally diverse carboxylic esters, it also provides
fundamentally important insights into the reactivity of the
elusive trifluoromethylcopper species. Further investigation of
the more detailed reaction mechanism as well as the synthetic
applications of the reaction are currently underway in our
laboratory.
(8) Hagooly, A.; Rozen, S. J. Org. Chem. 2004, 69, 7241; and
references therein.
(9) (a) Dörwald F. Z. Metal Carbenes in Organic Synthesis;
Wiley-VCH: Weinheim, 1999. (b) Kirmse, W. Angew. Chem., Int. Ed.
2003, 42, 1088. (c) de Frémont, P.; Marion, N.; Nolam, S. P. Coord.
Chem. Rev. 2009, 253, 862. (d) Zhang, Y.; Wang, J. Eur. J. Org.
Chem. 2011, 1015. (e) Franssen, N. M. G.; Walters, A. J. C.; Reeka, J.
N. H.; de Bruin, B. Catal. Sci. Technol., 2011, 1, 153.
(10) (a) Imoto, M.; Nakaya, T. J. Macromol. Sci., Rev. Macromol.
Chem., 1972, 7, 1; and references therein. (b) Cairncross, A.;
Sheppard, W. A. J. Am. Chem. Soc. 1968, 90, 2186. (c) Zhao, X.; Wu,
G.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 3296. (d) Xiao,
Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2011,
50, 1114. (e) Ye, F.; Ma, X.; Xiao, Q.; Li, H.; Zhang, Y.; Wang, J. J.
Am. Chem. Soc. 2012, 134, 5742.
(11) (a) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108,
832. (b) Yang, Z.-Y.; Wiemers, D. M.; Burton, D. J. J. Am. Chem.
Soc. 1992, 114, 4402. (c) Nair, H. K.; Burton, D. J. J. Am. Chem. Soc.
1997, 119, 9137. (d) Yang, Z.-Y.; Burton, D. J. J. Fluorine Chem.
2000, 102, 89.
(12) Doyle, M. P.; Mckervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; John Wiley &
Sons: New York, 1998.
ASSOCIATED CONTENT
SUPPORTING INFORMATION
Experimental procedures and characterization for all new
compounds, including 1H, 13C, and 19F NMR spectra.
AUTHOR INFORMATION
Corresponding Author
(13) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
(14) For examples of ligands associating with copper to retard the
decomposition of diazo compounds, see: (a) Wulfmanb, D. S.; W.
Peace, W.; Stefeen, E. K. Chem. Commun. 1971, 1360. (b) Salomon,
R. G.; Kochi, J. K.; J. Am. Chem. Soc.1973, 93, 3300. (c)
Díaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Prieto, F.;
Pérez, P. J. Organometallics 1999, 18, 2601.
ACKNOWLEDGMENT
This work was supported by the National Basic Research Program
of China (2012CB821600, 2012CB215500) and the National
Natural Science Foundation of China (20825209, 20832008).
REFERENCES
(15) (a) Theodoridis, G. Fluorine-Containing Agrochemicals: An
Overview of Recent Developments in Fluorine and the Environment:
(1) (a) Fluorine in Medicinal Chemistry and Chemical Biology (Ed.:
Ojima, I.), Wiley, Chichester, 2009. (b) Bégué, J.,-P.; Bonnet-Delpon,
D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH,
Weinheim, 2008. (c) Kirk, K., L.; Org. Process Res. Dev. 2008, 12,
305. (d) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(e) Hagmann,W., K. J. Med. Chem. 2008, 51, 4359. (f) Filler, R; Saha,
R. Future Med. Chem. 2009, 1, 777.
(2) For recent reviews, see: (a) Furuya, T.; Kamlet, A. S.; Ritter, T.
Nature 2011, 473, 470. (b) Roy, S.; Gregg, B. T.; Gribble, G. W.; Le,
V.-D.; Roy, S. Tetrahedron 2011, 67, 2161. (c) Tomashenko, O. A.;
Grushin, V. V. Chem. Rev. 2011, 111, 4475. (d) Besset, T.; Schneider,
C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048.
(3) For examples, see: (a) McLoughlin, V. C. R.; Thrower, J.
Tetrahedron 1969, 25, 5921. (b) Urata, H.; Fuchikami, T.
Tetrahedron Lett. 1991, 32, 91. (c) Zanardi, A., Novikov, M. A.;
Martin, E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc.
2011, 133, 20901. (d) Novák, P; Lishchynskyi, A.; Grushin, V. V.
Angew. Chem., Int. Ed. 2012, 51, 7767. (e) Chen, Q.; Wu, S. J. Chem.
Soc., Chem. Commun. 1989, 705.
Agrochemicals, Archaeology, Green Chemistry
& Water (Ed.:
Tressaud, A.), Elsevier, Amsterdam, 2006. (b) Yamauchi, Y.; Hara, S.;
Senboku, H. Tetrahedron 2010, 66, 473.
(16) (a) Kuett, A.; Movchun, V.; Rodima, T.; et. al. J. Org. Chem.
2008, 73, 2607. (b) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A.
Organometallics 2008, 27, 6233. (c) For a discussion on the 19F NMR
chemical shift difference of [Cu(CF3)I]– in our cases, see section 6.2
in Supporting Information.
(17) For an example of well-defined α-carbonyl diazoalkane
complex of copper(I), see: Straub, B. F.; Rominger, F.; Hofmann, P.
Organometallics 2000, 19, 4305.
(18) For water-promoted dissociation of [CuI2]–, see: Kauffman, G.
B.; Fang, L. Y. Inorg. Synth. 1983, 22, 101.
(19) According to the overall yield (70–80%) of the “CuCF3”
species, the solution maybe also contain some other copper species
such as CuI, which can promote the trifluoromethylation. However, as
shown in Table 1, entries 1-4, its contribution to the final yield is
limited because it may transform into the unreactive species such as
[CuI2]– in the absence of water.
(20) CuOH is a very elusive species due to its instability, and the
theoretical study shows that it readily decomposes into stable
substances Cu2O and H2O. (See: Korzhavyi, P. A.; Soroka I. L.; Isaev,
(4)
For
examples
of
Cu-mediated/catalyzed
allylic
trifluoromethylation, see: (a) Andrew T. Parsons and Stephen L.
Buchwald, Angew. Chem., Int. Ed. 2011, 50, 9120. (b) Chu, L.; Qing,
F.-L. Org. Lett. 2012, 14, 2106. (c) See Ref. 3e. For more examples,
4
ACS Paragon Plus Environment