more prone to erosion of selectivity in the reduction
(e.g. Table 1, entries 1, 6, 11, 17 vs. entry 15). We believe that
this is due to diastereoselection in the small amount of alternative
reduction19 to give oxide and menthane (Scheme 4(ii)).
Soc., 2006, 128, 2788; V. S. Chan, R. G. Bergman and F. D. Toste,
J. Am. Chem. Soc., 2007, 129, 15122; G. Cedric, S. J. Canipa,
P. O’Brien and S. Taylor, J. Am. Chem. Soc., 2006, 128, 9336.
4 For reviews of P-stereogenic compounds, see:(a) A. Grabulosa,
J. Granell and G. Muller, Coord. Chem. Rev., 2007, 251, 25;
(b) D. S. Glueck, Synlett, 2007, 2627; (c) M. J. Johansson and
N. C. Kann, Mini-Rev. Org. Chem., 2004, 1, 233; (e) K. M.
Pietrusiewicz and M. Zablocka, Chem. Rev., 1994, 94, 1375.
5 P-Stereogenic Ligands in Enantioselective Catalysis, ed.
A. Grabulosa, Royal Society of Chemistry, Cambridge, UK, 2011.
6 (a) E. Bergin, C. T. O’Connor, S. B. Robinson, E. M. McGarrigle,
C. P. O’Mahony and D. G. Gilheany, J. Am. Chem. Soc., 2007,
129, 9566; (b) K. V. Rajendran, L. Kennedy and D. G. Gilheany,
Eur. J. Org. Chem., 2010, 5642.
7 R. Appel and M. Halstenberg, Tertiary Phosphane Halogenoalkane
Reagents, in Organophosphorus Regents in Organic Synthesis, ed. J. I. G.
Cadogan, Academic Press, London, 1979, ch. 9, p. 387; I. M. Downie,
J. B. Holmes and J. B. Lee, Chem. Ind. (London, U. K.), 1966, 900.
8 D. G. Gilheany, S. B. Robinson, C. P. O’Mahony, C. T.
O’Connor, E. Bergin, D. M. Walsh, E. F. Clarke, B. G. Kelly
and E. M. McGarrigle, Int. Patent, WO 118603, 2005. This method
has been successfully run on a multikilo scale in an industrial
process.
9 K. Naumann, G. Zon and K. Mislow, J. Am. Chem. Soc., 1969,
91, 7012; K. Naumann, G. Zon and K. Mislow, J. Am. Chem. Soc.,
1969, 91, 2788; G. Zon, K. E. DeBruin, K. Naumann and K. Mislow,
J. Am. Chem. Soc., 1969, 91, 7023; D. Valentine, Jr., J. F. Blount and
K. Toth, J. Org. Chem., 1980, 45, 3691; L. D. Quin, K. C. Caster,
J. C. Kislaus and K. A. Masch, J. Am. Chem. Soc., 1984, 106, 7021.
10 A fuller description of our working hypothesis is given in the ESIw.
11 For studies of such salts see: S. M. Godfrey, C. A. McAuliffe,
R. G. Pritchard and J. M. Sheffield, Chem. Commun., 1998, 921;
N. C. Gonnella, C. Busacca, S. Campbell, M. Eriksson, N. Grinberg,
T. Bartholomeyzik, S. Ma and D. L. Norwood, Magn. Reson. Chem.,
2009, 47, 461.
In summary, we have adduced convincing evidence for our
proposed course for the asymmetric Appel process. This will
enable us to work to improve its selectivity. Also during the
study, we discovered an unprecedented alternative method for
the creation of P-stereogenicity. The one-pot method starts
from the more convenient oxides, has more easily removed
by-products (CO, CO2, HCl) and yields the protected phosphine
directly. To be sure, much development work is needed, both to
raise the selectivity and minimise its erosion. However, in that
regard, we now have greater scope in our choice of chiral alcohol
auxiliary because it can be recovered at the end of the reaction.
We thank sincerely Science Foundation Ireland (SFI) for
funding this chemistry under Grants RFP/08/CHE1251 and
09/IN.1/B2627. We are also grateful to UCD Centre for
Synthesis and Chemical Biology (CSCB) and the UCD School
of Chemistry and Chemical Biology for access to their extensive
analysis facilities. DGG thanks sincerely University College
Dublin for a President’s Research Fellowship during which
the conception of this work took place. The Fellowship was
held partly in Stanford University in the laboratory of Professor
James Collman, to whom DGG is warmly appreciative for both
his hospitality and stimulating intellectual discussions.
Notes and references
12 Diastereomeric excess (de) is used rather than diastereomeric ratio
(dr) to facilitate comparison with the enantiomeric excess (ee) of
the ultimate products of the reactions (oxides or boranes).
13 E.g.: the reaction mixture derived from oxalyl chloride treatment
of methylphenyl(o-tolyl)phosphine oxide directly after addition of
(À)-menthol shows two narrow signals for DAPS of unequal
heights (92 : 8) at d 67.8 and d 67.3 ppm, replacing the CPS signal
at d 71.0. An acquisition period of 3 s was set for all 31P spectra to
allow full relaxation, extensive precautions taken to ensure that the
measured de truly reflected that produced in the reactions: see ESIw
for details.
1 Catalytic Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH,
New York, 3rd edn, 2010; Tetrahedron: Asymmetry, ed.
X. Zhang, 2004, vol. 15, pp. 2099–2311, special issue; K. V. L.
Crepy and T. Imamoto, Top. Curr. Chem., 2003, 229, 1;
S. J. Connon, Angew. Chem., Int. Ed., 2006, 45, 3909; J. L.
Methot and W. R. Roush, Adv. Synth. Catal., 2004, 346, 1035.
2 Phosphorus Ligands in Asymmetric Catalysis, ed. A. Borner,
¨
¨
Wiley-VCH, Weinheim, 2008, vol. I–III; S. Luhr, J. Holz and
A. Borner, ChemCatChem, 2011, 3, 1708.
¨
3 Leading references to the major methods: Methyl phosphinate route:
O. Korpium and K. Mislow, J. Am. Chem. Soc., 1967, 89, 4784;
B. D. Gatineau, L. Laurent Giordano and G. Buono, J. Am. Chem.
Soc., 2011, 133, 10728; Q. Xu, C.-Q. Zhao and L.-B. Han, J. Am.
14 M. Masaki and K. Fukui, Chem. Lett., 1977, 151; K. Fukui and
N. Kakeya, U. S. Patent, 4,301,301 Nov. 17, 1981.
15 Direct (achiral) conversion of phosphine oxides to boranes:
K. V. Rajendran and D. G. Gilheany, Chem. Commun., 2011,
48, 817.
Chem. Soc., 2008, 130, 12648. Cyclic phosphoramidate route: S. Juge
and J. P. Genet, Tetrahedron Lett., 1989, 30, 2783; C. Darcel, J. Uziel
and S. Juge, in ref. 2, vol. 3, pp. 1211–1233; T. Leon, A. Riera and
´
´
16 Electroreduction of phosphine oxides: M. Kuroboshi, T. Yano,
S. Kamenoue, H. Kawakubo and H. Tanaka, Tetrahedron, 2011,
67, 5825.
17 Catalytic Appel reaction: R. M. Denton, J. An and B. Adeniran,
Chem. Commun., 2010, 46, 3025; R. M. Denton, J. An, B. Adeniran,
A. J. Blake, W. Lewis and A. M. Poulton, J. Org. Chem., 2011,
76, 6749.
18 K. V. Rajendran, J. S. Kudavalli, K. S. Dunne and D. G. Gilheany,
Eur. J. Org. Chem., 2012, 2720–2723.
19 K. E. Elson, I. D. Jenkins and W. A. Loughlin, Org. Biomol. Chem.,
2003, 1, 2958; J. B. Hendrickson, M. Singer and Md. S. Hussoin,
J. Org. Chem., 1993, 58, 6913. Also in LiAlH4 reductions any
produced oxide will be reduced racemically: see ref. 18.
X. Verdaguer, J. Am. Chem. Soc., 2011, 133, 5740; Desymmetrisation:
A. R. Muci, K. R. Campos and D. A. Evans, J. Am. Chem. Soc.,
1995, 117, 9075; A. Ohashi, S. I. Kikuchi, M. Yasutake and
T. Imamoto, Eur. J. Org. Chem., 2002, 2535; J. J. Gammon,
V. H. Gessner, G. R. Barker, J. Granander, A. C. Whitwood,
C. Strohmann, P. O’Brien and B. Kelly, J. Am. Chem. Soc., 2010,
132, 13922; J. Granander, F. Secci, S. J. Canipa, P. O’Brien and
B. Kelly, J. Org. Chem., 2011, 76, 4794; Enzymatic resolution:
P. Kielbasinski, J. Omelanczuk and M. Mikolajczyk, Tetrahedron:
Asymmetry, 1998, 9, 3283; Dynamic resolution: H. Heath, B. Wolfe,
T. Livinghouse and S. K. Bae, Synthesis, 2001, 2341; C. E. Headley
and S. P. Marsden, J. Org. Chem., 2007, 72, 7185; Catalytic
asymmetric synthesis: C. Scriban and D. S. Glueck, J. Am. Chem.
c
10042 Chem. Commun., 2012, 48, 10040–10042
This journal is The Royal Society of Chemistry 2012