8944
J. Gatenyo et al. / Tetrahedron 68 (2012) 8942e8944
commercially available, thereby simplifying the process. Unreacted
fluorine should be captured by a simple trap containing a solid base,
such as soda-lime located at the outlet of the glass reactor. A de-
tailed setup for working with F2 could be found in the literature.17 If
elementary precautions are taken, work with fluorine is relatively
simple and we have never experienced any difficulties or un-
pleasant situations.
purified by chromatography, eluting with a gradient (0e15%) of
MeOH/DCM to give the 3-oxo-3,4-dihydrobenzo-1,2,4-triazine 1-
oxide (4) as a pale yellow solid: mp 228e229 ꢀC; Rf (E.A) 0.64; IR
1663 cmꢁ1; H NMR (CD3OD) 8.23 (1H, dd, J¼8.2, 1.2 Hz), 7.83 (1H,
ddd, J¼8.7, 7.8, 1.3 Hz), 7.36e7.42 (2H, m); 13C NMR (DMSO) 153.3,
136.9, 136.8, 129.6, 124.2, 121.2, 116.6; HRMS (APPI) m/z calcd for
C7H5N3O2 164.0460 (MþH)þ, found 164.0463. Anal. Calcd for
C7H5N3O2: C, 51.54; H, 3.09; N, 25.76. Found: C, 51.29; H, 2.80; N,
26.00.
4.3. General procedure for producing HOF$CH3CN
A mixture of 10e20% F2 in nitrogen was used throughout this
work. The gas mixture was prepared in a secondary container prior
to the reaction and passed at a rate of about 400 mL per minute
through a cold (ꢁ15 ꢀC) mixture of 100 mL of CH3CN and 10 mL of
H2O (or 10 mL CH3CN and 1mL H218O) in a regular glass reactor. The
development of the oxidizing power was monitored by reacting
aliquots with an acidic aqueous solution of KI. The liberated iodine
was then titrated with thiosulfate. Typical concentrations of the
oxidizing reagent were around 0.4e0.6 M.
References and notes
1. (a) Xia, Q.; Zhang, L.; Zhang, J.; Sheng, R.; Yang, B.; He, Q.; Hu, Y. Eur. J. Med.
Chem. 2011, 46, 919e926; (b) Ismail, M. M. F.; Amin, K. M.; Naoman, E.; Soliman,
D. H.; Ammar, Y. A. Eur. J. Med. Chem. 2010, 45, 2733e2738; (c) Lavaggi, M. L.;
ꢀ
Cabrera, M.; Gonzalez, M.; Cerecetto, H. Chem. Res. Toxicol. 2008, 21, 1900e1906;
(d) Hicks, K. O.; Siim, B. G.; Jaiswal, J. K.; Pruijin, F. B.; Fraser, A. M.; Patel, R.;
Hogg, A.; Liyanage, H. D. S.; Dorie, M. J.; Brown, J. M.; Denny, W. A.; Hay, M. P.;
Wilson, W. R. Clin. Cancer Res. 2010, 16, 4946e4957; (e) Hay, M. P.; Gamage, S.
A.; Kovacs, M. S.; Pruijn, F. B.; Anderson, R. F.; Patterson, A. V.; Wilson, W. R.;
Brown, J. M.; Denny, W. A. J. Med. Chem. 2003, 46, 169e182; (f) Hay, M. P.; Hicks,
K. O.; Pchalek, K.; Lee, H. H.; Blaser, A.; Pruijn, F. B.; Anderson, R. F.; Shinde, S. S.;
Wilson, W. R.; Denny, W. A. J. Med. Chem. 2008, 51, 6853e6865; (g) Solano, B.;
Junnotula, V.; Marin, A.; Villar, R.; Burguete, A.; Vicente, E.; Perez-Silanes, S.;
Monge, A.; Dutta, S.; Sarkar, U.; Gates, K. S. J. Med. Chem. 2007, 50, 5485e5492.
4.4. General procedure for working with HOF$CH3CN
A mono oxide derivative 1 was dissolved in DCM, and the
mixture was cooled to 0 ꢀC. The solution containing the oxidizing
agent was than added slowly to the reaction vessel. The reaction
was stopped after a few minutes by evaporation of the solvent al-
most to dryness. The products were isolated and purified by flash
chromatography, eluting with a gradient (0e15%) of MeOH/DCM.
ꢀ
2. (a) Vicente, E.; Villar, R.; Burguete, A.; Solano, B.; Perez-Silanes, S.; Aldana, I.;
Maddry, J. A.; Lenaerts, A. J.; Franzblau, S. G.; Cho, S. h.; Monge, A.; Goldman, R.
C. Antimicrob. Agents Chemother. 2008, 52, 3321e3326; (b) Ganley, B.;
Chowdhury, G.; Bhansali, J.; Daniels, J. S.; Gates, K. S. Bioorg. Med. Chem. 2001, 9,
2395e2401; (c) Suter, W.; Rosselet, A.; Knusel, F. Antimicrob. Agents Chemother.
1978, 13, 770e783.
3. (a) Brown, J. M. Br. J. Cancer 1993, 67, 1163e1170; (b) Wilson, W. R.; Hay, M. P.
Nat. Rev. Cancer 2011, 11, 393e410.
4. (a) Fitzsimmons, S. A.; Lewis, A. D.; Riley, R. J.; Workman, P. Carcinogenesis 1994,
15, 1503e1510; (b) Patterson, A. V.; Saunders, M. P.; Chinje, E. C.; Patterson, L.
H.; Stratford, I. J. Anti-Cancer Drug Des. 1998, 13, 541e573; (c) Fuchs, T.;
Chowdhary, G.; Barnes, C. L.; Gates, K. S. J. Org. Chem. 2001, 66, 107e114.
5. Laderoute, K. L.; Wardman, P.; Rauth, M. Biochem. Pharmacol. 1988, 37,
1487e1495.
6. (a) Zeman, E. M.; Brown, J. M.; Lemmon, M. J.; Hirst, V. K.; Lee, W. W. Int. J.
Radiat. Oncol., Biol., Phys. 1986, 12, 1239e1242; (b) Zeman, E. M.; Baker, M. A.;
Lemmon, M. J.; Pearson, B. A.; Adams, J. A.; Brown, J. M.; Lee, W. W.; Tracy, M.
Int. J. Radiat. Oncol., Biol., Phys. 1989, 16, 977e981; (c) Junnotula, V.; Sarkar, U.;
Sinha, S.; Gates, K. S. J. Am. Chem. Soc. 2009, 131, 1015e1024; (d) Chowdhury, G.;
Junnutula, V.; Daniels, J. S.; Greenberg, M. M.; Gates, K. S. J. Am. Chem. Soc. 2007,
129, 12870e12877; (e) Shinde, S. S.; Maroz, A.; Hay, M. P.; Patterson, A. V.;
Denny, W. A.; Anderson, R. F. J. Am. Chem. Soc. 2010, 132, 2591e2599.
7. Mason, J. C.; Tennant, G. J. Chem. Soc. B 1970, 911e916.
8. (a) Jankowski, S.; Rafal, K. J. Labelled Compd. Radiopharm. 1995, 36, 373e376; (b)
Sitter, A. J.; Terner, J. J. Labelled Compd. Radiopharm. 1985, 22, 461e465.
9. Rozen, S.; Bareket, Y.; Kol, M. Tetrahedron 1993, 49, 8169e8178.
10. (a) Rozen, S.; Bar-Haim, A.; Mishani, E. J. Org. Chem. 1994, 59, 1208e1209; (b)
Rozen, S.; Carmeli, M. J. Am. Chem. Soc. 2003, 125, 8118e8119; (c) Rozen, S.;
Dayan, S. Angew. Chem., Int. Ed. 1999, 38, 3471e3473.
11. (a) Rozen, S.; Golan, E. Eur. J. Org. Chem. 2003, 10, 1915e1917; (b) Hung, M. H.;
Smart, B. E.; Feiring, A. E.; Rozen, S. J. Org. Chem. 1991, 56, 3187e3189.
12. Rozen, S.; Bareket, Y. J. Org. Chem. 1997, 62, 1457e1462.
4.4.1. Synthesis of 3-substituted 1,2,4-benzotriazine 1,4-dioxides.
Compounds 2a,7 2b,6e 2d, and 2e15 were prepared from the corre-
sponding 1,2,4-benzotriazine 1-oxides as described above, using
2 equiv of the oxidizing agent. The physical and spectral properties
of all products completely matched those appearing in the
literature.
4.4.2. Synthesis of 3-(4-nitrophenyl)-1,2,4-benzotriazine 1,4-dioxide
(2f). Compound 2f was prepared from 3-(4-nitrophenyl)-1,2,4-
benzotriazine 1-oxide (1f) (0.15 g, 0.56 mmol) as described above,
using 2 equiv of the oxidizing agent. A pale beige solid (0.05 g, 95%
yield, 30% conversion) was obtained: mp>300 ꢀC; Rf (DCM) 0.38;
1H NMR (CDCl3) 8.84 (2H, d, J¼8.8 Hz), 8.67 (1H, d, J¼8.6 Hz), 8.57
(1H, d, J¼8.4 Hz), 8.39 (2H, d, J¼8.8 Hz), 8.09 (1H, t, J¼8.6 Hz), 7.95
(1H, t, J¼8.4 Hz); 13C NMR 120.5, 124.1, 129.6, 129.8, 131.3, 134.0,
136.3, 140.0, 147.6, 150.1 158.8; HRMS (APPI) m/z calcd for
C13H8N4O4 285.0624 (MþH)þ, found 285.0629.
13. Carmeli, M.; Rozen, S. J. Org. Chem. 2006, 71, 5761e5765.
14. (a) Rozen, S.; Kol, M. J. Org. Chem. 1992, 57, 7342e7344; (b) Kol, M.; Rozen, S. J.
4.5. Formation of the triazolone 4
Chem. Soc., Chem. Commun. 1991, 567e568.
15. Hay, M. P.; Pchalek, K.; Pruijn, F. B.; Hicks, K. O.; Siim, B. G.; Anderson, R. F.;
Shinde, S. S.; Phillips, V.; Denny, W. A.; Wilson, W. R. J. Med. Chem. 2007, 50,
6654e6664.
16. Robbins, R. F.; Schofield, K. J. Chem. Soc. 1957, 3186e3194.
17. Dayan, S.; Kol, M.; Rozen, S. Synthesis 1999, 1427e1930.
A large excess of HOF$CH3CN solution was added in one portion
to the mono oxide derivative 1 (0.09 g, 0.6 mmol) in DCM at room
temperature. The reaction was stopped after a few minutes by
evaporation of the solvent almost to dryness. The residue was