Journal of the American Chemical Society
Article
Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T. J. Antibiot. 1998, 51,
394−401. (d) Hori, H.; Igarashi, Y.; Kajiura, T.; Furumai, T.; Higashi,
K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T. J. Antibiot. 1998,
51, 402−417. (e) Hori, H.; Kajiura, T.; Igarashi, Y.; Furumai, T.;
Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T. J. Antibiot.
2002, 55, 46−52. (f) Kajiura, T.; Furumai, T.; Igarashi, Y.; Hori, H.;
Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T. J. Antibiot.
2002, 55, 53−60. (g) Igarashi, Y.; Kajiura, T.; Furumai, T.; Hori, H.;
Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T. J. Antibiot.
2002, 55, 61−70. (h) Cho, S. I.; Fukazawa, H.; Honma, Y.; Kajiura, T.;
Hori, H.; Igarashi, Y.; Furumai, T.; Oki, T.; Uehara, Y. J. Antibiot.
2002, 55, 270−278. (i) Hori, H.; Igarashi, Y.; Kajiura, T.; Sato, S.;
Furumai, T.; Higashi, K.; Ishiyama, T.; Uehara, Y.; Oki, T. Tennen Yuki
Kagobutsu Toronkai Koen Yoshishu 2004, 46, 49−54.
(16) We observed that ent-9 is stable to LiTMP and LDA at −78 °C,
and LiHMDS at 0 °C in THF. At higher respective temperatures for
prolonged reaction times, significant decomposition occurred.
(17) Simple 2-cyclohexenones will undergo the Michael addition
within seconds at −78 °C and eventual Claisen reaction at −10 °C
with the ortho-toluate carbanion corresponding to the D-/E-ring. In
contrast, ent-9 underwent Michael addition after approximately 1 h,
and the Claisen reaction was never driven to completion when the
dianion of ( )-24 was employed.
(18) DDQ or PhSeCl with pyridine could successfully be employed
to aromatize dihydronaphthalenes of simple BCD-ring model systems
but proved unsuccessful on binaphthyl systems.
(19) (a) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178−180.
(b) Lee, H. G.; Ahn, J. Y.; Lee, A. S.; Shair, M. D. Chem. Eur. J. 2010,
16, 13058−13062.
(20) (a) Wildeman, J.; Borgen, P. C.; Pluim, H. Tetrahedron Lett.
1978, 25, 2213−2216. (b) Huang, X.; Xue, J. J. Org. Chem. 2007, 72,
3965−3968.
(2) Romaine, I. M.; Hempel, J. E.; Shanmugam, G.; Hori, H.;
Igarashi, Y.; Polavarapu, P. L.; Sulikowski, G. A. Org. Lett. 2011, 13,
4538−4541.
(3) For studies towards the hibarimicins or their related natural
products, see: (a) Lee, C.-S.; Audelo, M. Q.; Reibenpies, J.; Sulikowski,
G. A. Tetrahedron 2002, 58, 4403−4409. (b) Maharoof, U. S.;
Sulikowski, G. A. Tetrahedron Lett. 2003, 44, 9021−9023. (c) Kim, K.;
Mahroof, U. S.; Raushel, J.; Sulikowski, G. A. Org. Lett. 2003, 5, 2777−
2780. (d) Narayan, S.; Roush, W. R. Org. Lett. 2004, 6, 3789−3792.
(e) Lambert, W. T.; Roush, W. R. Org. Lett. 2005, 7, 5501−5504.
(f) Lee, W. D.; Kim, K.; Sulikowski, G. A. Org. Lett. 2005, 7, 1687−
1689. (g) Li, J.; Todaro, L. J.; Mootoo, D. R. Org. Lett. 2008, 10,
1337−1340. (h) Li, J.; Todaro, L.; Mootoo, D. R. Eur. J. Org. Chem.
2011, 6281−6287. (i) Milgram, B. C.; Liau, B. B.; Shair, M. D. Org.
Lett. 2011, 13, 6436−6439.
(4) Tatsuta, K.; Fukuda, T.; Ishimori, T.; Yachi, R.; Yoshida, S.;
Hashimoto, H.; Hosokawa, S. Tetrahedron Lett. 2012, 53, 422−425.
(5) The use of a benzyl group was a strategic concession to protect
the sensitive core of 1 up until the last step of an eventual synthesis.
(6) For other examples of two-directional double annulation
reactions, see: (a) Hauser, F. M.; Gauuan, P. J. Org. Lett. 1999, 1,
671−672. (b) Reference 2. (c) Reference 4 and refs therein.
(7) Ferrier, R. J. J. Chem. Soc., Perkin Trans. 1 1979, 1455−1458.
(8) See the Supporting Information for full details.
(21) Benzyl phenyl sulfide substituted ortho-toluates were con-
currently found to be useful partners for naphthol annulations and
were ultimately employed in our synthesis of 2a and 6 due to the
inability to construct the C6-benzyl fluoride analogue of ( )-34.
(22) Bitha, P.; Hlavka, J. J.; Boothe, J. H. J. Med. Chem. 1970, 13, 89−
92.
(23) Pilcher, A. S.; Ammon, H. L.; DeShong, P. J. Am. Chem. Soc.
1995, 117, 5166−5167.
(24) (a) For brevity, each atropisomer is depicted as a single
structure lacking stereochemistry about the C2−C2′ bond. See the
Supporting Information for full details. (b) The regioisomer of the
enolized 1,3-diketone was undetermined and is arbitrarily depicted.
(25) No NMR or CD spectra for 3a and 6 have been previously
recorded according to ref 26. See the Supporting Information for full
details.
(26) Described in a personal communication with Professor Y.
Igarashi and Professor H. Hori.
(27) (a) Preferential oxidation of the D-ring occurs in simpler BCD-
1
ring model systems. (b) The H NMR signal of the methoxymethyl
groups of ent-27a and ent-27b is shifted over 0.6 ppm upfield relative
to the corresponding monomer, suggesting that they are positioned
over the naphthyl ring systems and subject to anisotropic magnetic
field effects.
(9) Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 19, 2263−
2266.
(10) Wendt, J. A.; Gauvreau, P. J.; Bach, R. D. J. Am. Chem. Soc. 1994,
116, 9921−9926.
(28) Kornblum, N.; Jones, W. J.; Anderson, G. J. J. Am. Chem. Soc.
1959, 81, 4113−4114.
(11) For related transformations utilizing ortho-quinone methides,
see: (a) Reference 4. (b) Hart, D. J.; Huang, H.-C. J. Am. Chem. Soc.
1988, 110, 1634−1635. (c) Nicolaou, K. C.; Lim, Y. H.; Piper, J. L.;
Papageorgiou, C. D. J. Am. Chem. Soc. 2007, 129, 4001−4013.
(12) For reviews, see: (a) Mal, D.; Pahari, P. Chem. Rev. 2007, 107,
1892−1918. (b) Rathwell, K.; Brimble, M. A. Synthesis 2007, 5, 643−
662.
(29) Sakulsombat, M.; Angelin, M.; Ramstrom, O. Tetrahedron Lett.
̈
2010, 51, 75−78.
(30) Kummer, D. A.; Li, D.; Dion, A.; Myers, A. G. Chem. Sci. 2011,
2, 1710−1718.
(31) The small coupling constant between the C6′ and C7′ hydrogen
atoms of (−)-35a and (+)-35b suggests a syn relationship of the
hydrogen atoms with respect to the ring system. This relative
stereochemistry would preclude syn-elimination to aromatize the F-
ring. Indeed, one diastereomer of the corresponding sulfoxide of
( )-34 underwent two-directional annulation but failed to eliminate to
aromatize the F-ring.
(13) 5-Methylvanillin (21) was prepared from vanillin in two steps
on multigram scale following a literature procedure: Sinhababu, A. K.;
Borchardt, R. T. Synth. Commun. 1983, 13, 677−683.
(14) (a) For other uses of Michael−Claisen reaction sequences to
construct naphthalene derivatives, see: Sun, C.; Wang, Q.; Brubaker, J.
D.; Wright, P. M.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.;
Wang, Y.-M.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913−17927
and references therein. (b) For a related approach to 3a, see ref 2.
(15) (a) ortho-Toluate and related carbanions will suffer from
competitive bimolecular self-condensation reactions with the ester
moiety if the Michael addition is not fast enough. For an interesting
discussion on the stability of ortho-toluate and related carbanions, see:
Brubaker, J. D. Ph.D. Thesis, Harvard University, 2007 and references
therein. (b) In the case of a single annulation process, the instability of
the deprotonated annulation donor can often be circumvented
through the use of excess donor. However, due to the inherent
stoichiometry of the two-directional double annulation, the biaryl
donor is used as the limiting reactant, and thus the stability of its
dianion is critical to the success of the reaction.
(32) The carbohydrates of the hibarimicin natural products are
cleaved with acidic methanol (1 M HCl, 30 °C). These conditions are
similar to those we employ during the benzyl deprotection and
oxidation of (−)-37a and (+)-37b. However, milder acidic conditions
(i.e., aq pH 3.5 phosphate buffer) in methanol may potentially be
substituted during the analogous deprotection and oxidation of 1
because these conditions are employed in the HPLC purification of 1
and hibarimicin related natural products. See ref 1f, g for the
conditions used for carbohydrate cleavage and purification of the
hibarimicin natural products.
(33) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds;
John Wiley & Sons, Inc.: New York, 1994.
H
dx.doi.org/10.1021/ja307207q | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX