5030
J. Hu et al. / Inorganica Chimica Acta 362 (2009) 5023–5030
Appendix A. Supplementary material
CCDC 723809, 723810, 723811, 723812 and 723813 contain the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
tary data associated with this article can be found, in the online
References
[1] J.P. Zhang, S.L. Zheng, X.C. Huang, X.M. Chen, Angew. Chem., Int. Ed. 43 (2004)
206.
[2] G.X. Liu, K. Zhu, H. Chen, R.Y. Huang, X.M. Ren, CrystEngComm 10 (2008) 1527.
[3] S. Kitagawa, S. Noro, T. Nakamura, Chem. Commun. (2006) 701.
[4] G.X. Liu, Y.Q. Huang, Q. Chu, T. Okamura, W.Y. Sun, H. Liang, N. Ueyama, Cryst.
Growth Des. 8 (2008) 3233.
[5] A.C. Sudik, A.R. Millward, N.W. Ockwig, A.P. Cote, J. Kim, O.M. Yaghi, J. Am.
Chem. Soc. 127 (2005) 7110.
[6] A.B. Lysenko, E.V. Govor, H. Krautscheid, K.V. Domasevitch, Daltron Trans.
(2006) 3772.
[7] G.A. Senchyk, A.B. Lysenko, H. Krautscheid, J. Sieler, K.V. Domasevitch, Acta
Crystallogr., Sect. C 64 (2008) m246.
Fig. 7. Solid-state photoluminescence spectra of 1 (kex = 371 nm), 2 (kex = 381 nm),
3 (kex = 399 nm), 4 (kex = 398 nm) and 5 (kex = 379 nm) at room temperature.
[8] B. Ding, Y.Y. Liu, Y.Q. Huang, W. Shi, P. Cheng, D.Z. Liao, S.P. Yan, Cryst. Growth
Des. 9 (2009) 593.
[9] X.H. Bu, W. Chen, W.F. Hou, M. Du, R.H. Zhang, F. Brisse, Inorg. Chem. 41 (2002)
3477.
[10] L. Carlucci, G. Ciani, P. Macchi, D.M. Proserpio, S. Rizzato, Chem. Eur. J. 5 (1999)
237.
[11] B.L. Schottel, H.T. Chifotides, M. Shatruk, A. Chouai, L.M. Perez, J. Bacsa, K.R.
Dunbar, J. Am. Chem. Soc. 128 (2006) 5895.
[12] O.S. Jung, Y.J. Kim, Y.A. Lee, K.M. Park, S.S. Lee, Inorg. Chem. 42 (2003) 844.
[13] B.L. Li, Y.F. Peng, B.Z. Li, Y. Zhang, Chem. Commun. (2005) 2333.
[14] N. Schultheiss, D.R. Powell, E. Bosch, Inorg. Chem. 42 (2003) 5304.
[15] A. Schaate, S. Klingelhofer, P. Behrens, M. Wiebcke, Cryst. Growth Des. 8 (2008)
3200.
[16] S. Cui, Y.L. Zhao, J.P. Zhang, Q. Liu, Y. Zhang, Cryst. Growth Des. 8 (2008) 3803.
[17] M.A. Braverman, P.J. Szymanski, R.M. Supkowski, R.L. LaDuca, Inorg. Chim. Acta
360 (2009) 3684.
[18] Q.G. Zhai, C.Z. Lu, X.Y. Wu, S.R. Batten, Cryst. Growth Des. 7 (2007) 2332.
[19] H.A. Habib, J. Sanchiz, C. Janiak, Dalton Trans. (2008) 1734.
[20] G.C. Liu, Y.Q. Chen, X.L. Wang, B.K. Chen, H.Y. Lin, J. Solid State Chem. 182
(2009) 566.
[21] Y.F. Peng, B.Z. Li, J.H. Zhou, B.L. Li, Y. Zhang, Chin. J. Struct. Chem. 23 (2004)
985.
and 396 nm, free H2bdc shows fluorescence emission band at
393 nm (kex = 347 nm), whereas free H3btc, 2,6-H2pydc, 3,5-
H2pydc and btx ligands present very weak photoluminescence
emission under the same experimental conditions. The results
agree with previous studies that coordination polymers containing
cadmium and zinc ions exhibit photoluminescent properties [37].
Unfortunately, only weak emissions of complexes 3 (kem = 436 nm)
and 4 (kem = 449 nm) were observed. Taking the strong emission of
5 into consideration, the result imparts that the silver ion does neg-
atively impact the fluorescence of 3 and 4. In contrast to the free
ligands, the emission maximums of complexes 1–5 have changed,
which may be attributed to the changes of HOMO–LUMO energy
gap caused by the deprotonated polycarboxylate acid and neutral
ligand coordinating to metal centers. A charge-transfer may be
attributed to the joint contribution of intra-ligand transitions or
between the coordinated ligands and the metal centers [38,39].
[22] G.M. Sheldrick, SHELXTL-97, Program for Refining Crystal Structure Refinement,
University of Göttingen, Germany, 1997.
[23] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of
Gottingen, Germany, 1997.
4. Conclusions
[24] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[25] X.R. Meng, Y.R. Liu, Y.L. Song, H.W. Hou, Y.T. Fan, Y. Zhu, Inorg. Chim. Acta 358
(2005) 3024.
[26] S.K. Ghosh, J. Ribas, P.K. Bharadwaj, CrystEngComm 6 (2004) 250.
[27] P. Mahata, S. Natarajan, Eur. J. Inorg. Chem. (2005) 2156.
[28] Y. Qi, Y.X. Che, J.M. Zheng, Cryst. Growth Des. 8 (2008) 3602.
[29] J. Yang, J.F. Ma, Y.Y. Liu, J.C. Ma, S.R. Batten, Cryst. Growth Des. 8 (2008) 4383.
[30] G.C. Xu, Q. Hua, T. Okamura, Z.S. Bai, Y.J. Ding, Y.Q. Huang, G.X. Liu, W.Y. Sun, N.
Ueyama, CrystEngComm 11 (2009) 261.
[31] M.L. Tong, S.L. Zheng, X.M. Chen, Chem. Eur. J. 6 (2000) 3729.
[32] K.V. Domasevitch, P.V. Solntsev, I.A. Guralskiy, H. Krautscheid, E.B. Rusanov,
A.N. Chernega, J.A.K. Howard, Dalton Trans. (2007) 3893.
[33] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J. Chem.
Soc., Perkin Trans. 2 (1989) S1.
[34] S.L. Zheng, A. Volkov, C.L. Nygren, P. Coppens, Chem. Eur. J. 13 (2007) 8583.
[35] H.L. Gao, L. Yi, B. Zhao, X.Q. Zhao, P. Cheng, D.Z. Liao, S.P. Yan, Inorg. Chem. 45
(2006) 5980.
In summary, five new d10 metal coordination complexes were
synthesized and structurally characterized. Single crystal structure
analysis shows that 1, 3 and 5 possess 3D structures, 2 takes a 2D
layer motif, and 4 exhibits a 1D chain structure. These results dem-
onstrate the difference in coordination modes of the aromatic poly-
carboxylic acids has a significant influence on the formation and
structures of the resultant complexes. The flexible btx has the abil-
ity to adjust its configuration and coordination mode to meet the
coordination requirements of metal centers. The joint contribution
of the polycarboxylate acids and the flexible btx results in a variety
of fascinating coordination polymers.
Acknowledgment
[36] L.L. Wen, Y.Z. Li, Z.D. Lu, J.G. Lin, C.Y. Duan, Q.J. Meng, Cryst. Growth Des. 6
(2006) 530.
[37] J.D. Lin, J.W. Cheng, S.W. Du, Cryst. Growth Des. 8 (2008) 3345.
[38] J. Xu, Q. Yuan, Z.S. Bai, Z. Su, W.Y. Sun, Inorg. Chem. Commun. 12 (2009) 58.
[39] G.A. Farnum, W.R. Knapp, R.L. Laduca, Polyhedron 28 (2009) 291.
We gratefully acknowledge the financial support by the Na-
tional Natural Science Foundation of China (No. 20671082), NCET
and the Outstanding Talents Foundation by the He’nan province.