Journal of the American Chemical Society
Communication
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Work funded by NIH 1R01NS064404. D.S.H.C. was supported
by NIH training grant T32CA138312. We thank Julie Shi and
Selvi Srinivasan for technical help and scientific discussion.
REFERENCES
■
(1) Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Nat. Rev. Drug
Discov. 2005, 4, 581.
Figure 3. (a) Transfection efficiency of polyplexes based on
P(OEGMA)15-b-P(GMA-TEPA)50, P(OEGMA)15-SS-P(GMA-
TEPA)50, and P(GMA-TEPA)50 in HEK293T, HeLa, 2-day differ-
entiated PC-12, and HepG2 cells at an N/P ratio of 10. Data are shown
as mean SD (n = 3; student’s t test, *p < 0.05). (b) Transfection
efficiency of polyplexes formed by (b1) P(OEGMA)15-b-P(GMA-
TEPA)50, (b2) Tet1-P(OEGMA)15-b-P(GMA-TEPA)50, (b3) P-
(OEGMA)15-SS-P(GMA-TEPA)50, (b4) Tet1-P(OEGMA)15-SS-P-
(GMA-TEPA)50, and (b5) P(GMA-TEPA)50 in 6-day differentiated
PC-12 cells at an N/P ratio of 5. Data are shown as mean SD (n = 6;
student’s t test, **p < 0.01, ***p < 0.02).
(2) (a) Anderson, D. G.; Lynn, D. M.; Langer, R. Angew. Chem., Int. Ed.
2003, 42, 3153. (b) De Smedt, S. C.; Demeester, J.; Hennink, W. E.
Pharm. Res. 2000, 17, 113. (c) Gabrielson, N. P.; Lu, H.; Yin, L. C.; Li,
D.; Wang, F.; Cheng, J. J. Angew. Chem., Int. Ed. 2012, 51, 1143.
(d) Haensler, J.; Szoka, F. C. Bioconjugate Chem. 1993, 4, 372.
(3) Hwang, S. J.; Davis, M. E. Curr. Opin. Mol. Ther. 2001, 3, 183.
(4) (a) Miyata, K.; Kakizawa, Y.; Nishiyama, N.; Harada, A.; Yamasaki,
Y.; Koyama, H.; Kataoka, K. J. Am. Chem. Soc. 2004, 126, 2355.
(b) Oupicky, D.; Ogris, M.; Howard, K. A.; Dash, P. R.; Ulbrich, K.;
Seymour, L. W. Mol. Ther. 2002, 5, 463.
(5) (a) Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka,
K.; Yamasaki, Y.; Koyama, H.; Kataoka, K. J. Am. Chem. Soc. 2008, 130,
6001. (b) Walker, G. F.; Fella, C.; Pelisek, J.; Fahrmeir, J.; Boeckle, S.;
Ogris, M.; Wagner, E. Mol. Ther. 2005, 11, 418. (c) Yang, X. Z.; Du, J. Z.;
Dou, S.; Mao, C. Q.; Long, H. Y.; Wang, J. ACS Nano 2012, 6, 771.
(6) Behr, J. P. Chimia 1997, 51, 34.
transfection activity. However, the reducible polymers are less
efficient than the in vitro optimized homopolycation P(GMA-
TEPA)50. This is expected since the hydrophilic shielding layers
have been shown to inhibit polyplex uptake.20
(7) Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L.
Macromolecules 2001, 34, 2248.
To address decreased polyplex uptake, the targeted trans-
fection efficacy of Tet1-conjugated polyplexes was further
assessed in 6-day differentiated PC-12 cells. Differentiated PC-
12 cells display a neuron-like phenotype that includes increased
binding of the Tet1 peptide.15b The results (Figure 3b) clearly
show that conjugation of the Tet1 targeting peptide significantly
enhances transfection compared to corresponding polymer
lacking Tet1. Of all the block copolymers, the Tet1-
P(OEGMA)15-SS-P(GMA-TEPA)50 displays the highest trans-
fection efficacy. Its transfection efficacy is 50-fold higher than that
of nonreducible, nontargeted complexes, 6.1-fold higher than
nontargeted, reducible complexes, and 2.6-fold higher than
nonreducible targeted complexes. Most importantly, polyplexes
that include both targeting ligand and releasable shielding
coronas transfect target cells with efficiencies similar to the
homopolycation.
In summary, we have successfully developed a versatile
method to prepare functionalizable reduction-sensitive block
copolymers by integrated RAFT and ATRP techniques using a
novel, reducible double-head agent. Here, we prepared a neuron-
targeted copolymer for nucleic acid delivery applications. We
further showed that the resulting materials form particles that are
salt stable but, due to the combined properties of targeting and
shielding, still retain high transfection efficiencies comparable to
the analogous homopolycation vectors for targeted gene
delivery. The approach developed herein provides a versatile
means for preparing various types of multifunctional drug and
gene delivery vehicles.
(8) Sourkohi, B. K.; Cunningham, A.; Zhang, Q.; Oh, J. K.
Biomacromolecules 2011, 12, 3819.
(9) Wen, H. Y.; Dong, H. Q.; Xie, W. J.; Li, Y. Y.; Wang, K.; Paulettic,
G. M.; Shi, D. L. Chem. Commun. 2011, 47, 3550.
(10) Zhu, C. H.; Zheng, M.; Meng, F. H.; Mickler, F. M.; Ruthardt, N.;
Zhu, X. L.; Zhong, Z. Y. Biomacromolecules 2012, 13, 769.
(11) (a) Tang, L. Y.; Wang, Y. C.; Li, Y.; Du, J. Z.; Wang, J. Bioconjugate
Chem. 2009, 20, 1095. (b) Wang, Y. C.; Wang, F.; Sun, T. M.; Wang, J.
Bioconjugate Chem. 2011, 22, 1939. (c) Sun, H. L.; Guo, B. N.; Cheng,
R.; Meng, F. H.; Zhong, Z. Y. Biomaterials 2009, 30, 6358.
(12) Dey, S.; Kellam, B.; Alexander, M. R.; Alexander, C.; Rose, F. R. A.
J. J. Mater. Chem. 2011, 21, 6883.
(13) Talelli, M.; Rijcken, C. J. F.; van Nostrum, C. F.; Storm, G.;
Hennink, W. E. Adv. Drug Delivery Rev. 2010, 62, 231.
(14) (a) Nicolay, R.; Kwak, Y.; Matyjaszewski, K. Macromolecules 2008,
41, 4585. (b) Elsen, A. M.; Nicolay, R.; Matyjaszewski, K. Macro-
molecules 2011, 44, 1752. (c) Kwak, Y. W.; Nicolay, R.; Matyjaszewski,
K. Aust. J. Chem. 2009, 62, 1384.
(15) (a) Kwon, E. J.; Lasiene, J.; Jacobson, B. E.; Park, I. K.; Horner, P.
J.; Pun, S. H. Biomaterials 2010, 31, 2417. (b) Park, I. K.; Lasiene, J.;
Chou, S. H.; Horner, P. J.; Pun, S. H. J. Gene. Med. 2007, 9, 691.
(16) Xu, J. T.; He, J. P.; Wang, X. J.; Yang, Y. L. Macromolecules 2006,
39, 8616.
(17) Ho, Y. P.; Grigsby, C. L.; Zhao, F.; Leong, K. W. Nano Lett. 2011,
11, 2178.
(18) Jeong, J. H.; Kim, S. W.; Park, T. G. Prog. Polym. Sci. 2007, 32,
1239.
(19) Schaffert, D.; Wagner, E. Gene Ther. 2008, 15, 1131.
(20) Mishra, S.; Webster, P.; Davis, M. E. Eur. J. Cell Biol. 2004, 83, 97.
16557
dx.doi.org/10.1021/ja3085803 | J. Am. Chem. Soc. 2012, 134, 16554−16557