The thermal 6π electrocyclization of all-carbon-containing
trienes is an underutilized, yet highly powerful, reac-
tion with the capacity to generate two new stereocenters.
Furthermore, if the starting triene possesses a stereogenic
center, the newly generated stereocenters could be formed
in a highly diastereoselective manner. Nevertheless, the
electrocyclization of all-carbon trienes has received rela-
tively little attention in the synthesis of small molecules
when compared with other pericyclic reactions, such as the
DielsꢀAlder and Claisen reactions.4
presence of the C3 stereocenter would allow the C18
stereocenter to be formed in a stereocontrolled manner
through a torquoselective 6π electrocyclization (Scheme 1).
This unique approach stands in stark contrast to previous
synthetic strategies toward the synthesis of reserpine
alkaloids and hinges upon a seldom-explored remote
1,6-stereoselective 6π electrocyclization.4d
Although the literature does not offer an extensive
discussion of remote stereocontrol in the context of 6π
electrocyclization, we reasoned that a suitably constrained
scaffold, such as that of the triene 1, should allow the C3
stereocenter to influence the stereoselectivity of this trans-
formation (Scheme 1).4b While optimistic for the possibi-
lity of stereochemical control, we lacked any established
models to predict the diastereoisomer favored upon elec-
trocyclization. If successful, however, this synthetic strat-
egy would provide the pentacycle 2 possessing the requisite
ABCDE skeleton in a stereodefined manner. Upon re-
moval of R1, the exposed hydroxyl functionality could be
inverted readily, if necessary, and the resultant R,β-unsa-
turated ester contained in the E-ring could act as a handle
for elaboration to (()-reserpine and related alkaloids.
Scheme 1. Remote Stereochemical Induction via Thermal
Torquoselective 6π Electrocyclization
Scheme 2. Retrosynthesis of the Key Triene 1a
As a part of our growing interest in novel 6π electro-
cyclizations5 and a research program in nucleophilic phos-
phine catalysis for the synthesis of heterocycles and
carbocycles,6 we became interested in the potential of these
transformations to meet the goals of our synthetic strategy
for remote 1,6-stereoinduction. We envisioned that the
(4) For notable early examples of thermal torquoselective all-carbon
6π electrocyclizations, see: (a) Trost, B. M.; Shi, Y. J. Am. Chem. Soc.
1992, 114, 791. (b) Dauben, W. G.; Williams, R. G.; McKelvey, R. D.
J. Am. Chem. Soc. 1973, 95, 3932. (c) Corey, E. J.;Hortmann, A. G. J. Am.
Chem. Soc. 1963, 85, 4033. For recent examples, see: (d) Hayashi, R.;
Walton, M. C.; Hsung, R. P.; Schwab, J. H.; Yu, X. Org. Lett. 2010, 12,
5768. (e) Jung, M. E.; Min, S.-J. Tetrahedron 2007, 63, 3682. (f) Benson,
C. L.; West, F. G. Org. Lett. 2007, 9, 2545. (g) Sunnemann, H. W.; de
Meijere, A. Angew. Chem., Int. Ed. 2004, 43, 895. For recent examples of
all-carbon 6π electrocyclizations of achiral molecules, see: (h) Togeum, S.-
M. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetahedron Lett.
2009, 50, 4962. (i) Alvararez-Manzaneda, E.; Chahboun, R.; Cabrera, E.;
Alvarez, E.; Haidour, A.; Ramos, J. M.; Alvarez-Manzaneda, R.; Hma-
mouchi, M.; Es-Samti, H. Chem. Commun. 2009, 592. (j) Suffert, J.; Salem,
B.; Klotz, P. J. Am. Chem. Soc. 2001, 123, 12107. (k) von Zezschwitz, P.;
Petry, F.; de Meijere, A. Chem.;Eur. J. 2001, 7, 4035. For a review on
asymmetric electrocyclic reactions, see: (l) Thompson, S.; Coyne, A. G.;
Knipe, P. C.; Smith, M. D. Chem. Soc. Rev. 2011, 40, 4217. For recent
discussions on all-carbon 6π electrocyclizations, see: (m) Tantillo, D.
Angew. Chem., Int. Ed. 2009, 48, 31. (n) Bishop, L. M.; Barbarow, J. E.;
Bergman, R. B.; Trauner, D. Angew. Chem., Int. Ed. 2008, 47, 8100. (o) Yu,
T.-Q.; Fu, Y.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2006, 71, 6157.
a Ns = o-nitrobenzenesulfonyl.
We envisioned efficient access to 1 through cross-
coupling of a suitable pseudometal with the vinyl bromide
3, which could be derived from the appropriately functiona-
lized ester 4 (Scheme 2). We planned to generate the R,R-
dihaloester 4 from the allylic alcohol 5 through [3,3]-
sigmatropic rearrangement of the corresponding dihaloke-
tene acetal. Based upon our previous experience with
heterocycle formation through phosphine catalysis, we
expected a relatively straightforward elaboration of the
allylic alcohol 5 from the [4 þ 2] annulation product 6.6b
The [4 þ 2] annulation between the imine 7 and the
butadienoate 8 in the presence of catalytic PBu3 proceeded
uneventfully (Scheme 3);7 we isolated the tetrahydropyr-
idine 9 as a yellow crystalline solid after removal of the Boc
group in toluene under reflux in the presence of silica gel.
(5) (a) Creech, G. S.; Kwon, O. J. Am. Chem. Soc. 2010, 132, 8876. (b)
Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069.
(6) (a) Fan, Y. C.; Kwon, O. Phosphine Catalysis. In Science of
Synthesis; List, B., Ed.; Asymmetric Organocatalysis, Vol. 1, Lewis Base and
Acid Catalysts; Georg Thieme: Stuttgart, 2012; pp 723ꢀ782. (b) Villa,
R. A.; Xu, Q.; Kwon, O. Org. Lett. 2012, 14, 4634. (c) Tran, Y. S.;
Martin, T.; Kwon, O. Chem.;Asian J. 2011, 6, 2101. (d) Khong, S. N.;
Tran, Y. S.; Kwon, O. Tetrahedron 2010, 66, 4760. (e) Lu, K.; Kwon, O.
Org. Synth. 2009, 86, 2012. (f) Sriramurthy, V.; Barcan, G. A.; Kwon, O.
J. Am. Chem. Soc. 2007, 129, 12928. (g) Tran, Y. S.; Kwon, O. J. Am.
Chem. Soc. 2007, 129, 12632. (h) Tran, Y. S.; Kwon, O. Org. Lett. 2005,
7, 4289. (i) Zhu, X.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716.
(7) See the Supporting Information for the synthesis of 7.
Org. Lett., Vol. 14, No. 21, 2012
5389