Table 1. Catalyst Optimization Studies in the Reaction of
Aldimine 1a and Nitro-alkyne 2a
Scheme 1. Proposed Enantioselective Synthesis of Tetrahydro-
pyridines Using a Nitro-Mannich/Hydroamination Cascade
under the control of a bifunctional organocatalyst.6 The
resulting β-nitroamine III would then be poised to cyclize via
a hydroamination7 reaction using an appropriate metal cata-
lyst to furnish piperidine V after protodemetalation. Sub-
sequent exo/endo isomerization of the alkene8 would lead to
tetrahydropyridine VI. In contrast to our previous study,3a
an elimination of HONO was not anticipated and accordingly
cascade product VI was expected to retain the contiguous
stereocenters created in the initial nitro-Mannich reaction.
a Isolated yield after flash column chromatography. b Determined by
c
HPLC analysis of the purified product. (2R,3S)-30 and (2R,3R)-40
obtained. d (2S,3R)-3 and (2S,3S)-4 obtained.
the reaction of N-Boc-protected aldimine 1a and nitro-
alkyne 2a to investigate the diastereo- and enantioselectivity
of the nitro-Mannich reaction (Table 1). Various conditions
including solvent, temperature, and concentration were
explored (for full optimization studies, see Table S1 in the
Supporting Information (SI)). Pleasingly, using Takemoto’s
catalyst D9eꢀg in toluene at ꢀ15 °C we were able to syn-
thesize β-nitroamines 3 and 4 in good yield (87%) and
diastereoselectivity (87:13), while also obtaining excellent
enantioselectivity (92%) for the major diastereomer 3
(Table 1, entry 6).
With high enantioselectivity achieved in the nitro-
Mannich step using catalyst D, our attention then turned to
Figure 1. Bifunctional organocatalysts screened in the nitro-
Mannich reaction of aldimine 1a and nitro-alkyne 2a (Table 1).
(8) For examples of gold catalyzed alkene isomerization, see: (a)
Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 10858–10859. (b) Ito, H.; Harada, T.; Ohmiya, H.; Sawamu, M.
Beilstein J. Org. Chem. 2011, 7, 951–959.
(9) For seminal work using cinchonine and cinchonidine derived bi-
functional organocatalysts, see: (a) McCooey, S. H.; Connon, S. J. Angew.
Accordingly a variety of bifunctional organocatalysts
introduced by us and others9 (Figure 1) were screened in
ꢀ
(5) For a recent review of the nitro-Mannich reaction, see: (a)
Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011,
111, 2626–2704. For selected examples of enantioselective nitro-Mannich
reactions, see: (b) Wang, C.-J.; Dong, X.-Q.; Zhang, Z.-H.; Xue, Z.-Y.;
Teng, H.-L. J. Am. Chem. Soc. 2008, 130, 8606–8607. (c) Handa, S.;
Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc.
2010, 132, 4925–4934. (d) Anderson, J. C.; Stepney, C. J.; Mills, M. R.;
Horsfall, L. R.; Blake, A. J.; Lewis, W. J. Org. Chem. 2011, 76, 1961–1971.
(e) Wei, Y.; He, W.; Liu, Y.; Liu, P.; Zhang, S. Org. Lett. 2012, 14, 704–707.
(6) For selected reviews of bifunctional organocatalysis, see: (a) Doyle,
A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743. (b) Dondoni, A.;
Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638–4660. (c) Melchiorre, P.;
Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138–
6171. (d) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem.
Soc. Rev. 2012, 41, 2406–2447.
Chem., Int. Ed. 2005, 44, 6367–6370. (b) Vakulya, B.; Varga, S.; Csampai,
ꢀ
A.; Soos, T. Org. Lett. 2005, 7, 1967–1969. (c) Ye, J.; Dixon, D. J.; Hynes,
P. S. Chem. Commun. 2005, 4481–4483. (d) Li, B.; Jiang, L.; Liu, M.; Chen,
Y.; Ding, L.; Wu, Y. Synlett 2005, 603–606. For seminal work using
Takemoto’s catalyst, including enantioselective nitro-Mannich reactions,
see: (e) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672–12673. (f) Okino, T.; Nakamura, S.; Furukawa, T.; Takemoto, Y.
Org. Lett. 2004, 6, 625–627. (g) Xu, X.; Furukawa, T.; Okino, T.; Miyabe,
H.; Takemoto, Y. Chem.ꢀEur. J. 2006, 12, 466–476.
(10) For recent reviews of gold catalysis, see: (a) Shapiro, N.; Toste,
ꢀ
F. D. Synlett 2010, 675–691. (b) Corma, A.; Leyva-Perez, A.; Sabater,
M. J. Chem. Rev. 2011, 111, 1657–1712. (c) Rudolph, M.; Hashmi,
A. S. K. Chem. Soc. Rev. 2012, 41, 2448–2462.
(11) For a recent review of one-pot reactions using organocatalysis
and gold catalysis, see: (a) Loh, C. C. J.; Enders, D. Chem.;Eur. J.
2012, 18, 10212–10225. For selected examples of one-pot reactions using
organocatalysis and gold catalysis combined with an acid additive, see:
(b) Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A. Angew.
Chem., Int. Ed. 2009, 48, 8923–8926. (c) Jensen, K. L.; Franke, P. T.;
(7) For selected reviews of hydroamination reactions, see: (a)
Aillaud, I.; Collin, J.; Hannedouche, J.; Schulz, E. Dalton Trans. 2007,
5105–5118. (b) Hartwig, J. F. Nature 2008, 455, 314–322. For selected
examples of alkyne hydroaminations in reaction cascades, see: (c) Wang,
H.-F.; Yang, T.; Xu, P.-F.; Dixon, D. J. Chem. Commun. 2009, 3916–
ꢀ
Arroniz, C.; Kobbelgaard, S.; Jørgensen, K. A. Chem.;Eur. J. 2010, 16,
€
3918. (d) Ackermann, L.; Barfusser, S.; Potukuchia, H. K. Adv. Synth.
1750–1753. (d) Monge, D.; Jensen, K. J.; Franke, P. T.; Lykke;
Jørgensen, K. A. Chem.;Eur. J. 2010, 16, 9478–9484. (e) Loh,
C. C. J.; Badorrek, J.; Raabe, G.; Enders, D. Chem.;Eur. J. 2011, 17,
13409–13414.
Catal. 2009, 351, 1064–1072. (e) Patil, N. T.; Mutyala, A. K.; Lakshmi,
P. G. V. V.; Gajula, B.; Sridhar, B.; Pottireddygari, G. R.; Rao, T. P.
J. Org. Chem. 2010, 75, 5963–5975.
Org. Lett., Vol. 14, No. 20, 2012
5291