Job/Unit: O20241
/KAP1
Date: 28-06-12 10:43:10
Pages: 9
Asymmetric Total Syntheses of Cochliomycin A and Zeaenol
(R,E)-5-{(4S,5S)-5-[(S)-1-Hydroxybut-3-enyl]-2,2-dimethyl-1,3-di-
Supporting Information (see footnote on the first page of this arti-
1
oxolan-4-yl}pent-4-en-2-yl 2-Hydroxy-4-methoxy-6-vinylbenzoate cle): H NMR and 13C NMR spectra for all new compounds and
(27): Compound 26 (430 mg, 0.778 mmol) was taken up in DCM/
H2O (20 mL, 19:1). DDQ (266 mg, 1.17 mmol) was added in one
portion. The reaction mixture was stirred at room temperature for
1 h and filtered, and the filtrate was washed with NaHCO3 (5%)
solution, water, and brine. The organic layer was dried (MgSO4)
and the solvents were evaporated. Purification by silica gel
chromatography (ethyl acetate/petroleum ether 1:10) afforded the
pure compound 27 in 86% yield. [α]2D5 = –15.57 (c = 0.6, MeOH).
1H NMR (400 MHz, CDCl3): δ = 11.7 (1 H), 7.30–7.22 (m, 1 H),
6.48 (s, 1 H), 6.39 (s, 1 H), 5.89–5.72 (m, 2 H), 5.71–5.55 (m, 1 H),
5.49–5.43 (m, 1 H), 5.25–5.19 (m, 2 H), 5.13–5.03 (m, 2 H), 4.44–
4.41 (m, 1 H), 3.90 (4 H), 3.66–3.61 (m, 1 H), 2.52–2.2.40 (m, 2
H), 2.26–2.03 (m, 2 H), 1.40 (s, 3 H), 1.36 (s, 3 H), 1.31 (d, J =
6.4 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 170.7, 165.2,
164.2, 143.9, 138.7 (CH), 134.2 (CH), 132.2 (CH), 130.4, 129.9
(CH), 118.4 (CH2), 115.6 (CH2), 109.0, 108.6 (CH), 100.4 (CH),
82.8 (CH), 77.9 (CH), 72.2 (CH), 70.5 (CH), 55.6 (Me), 38.9 (CH2),
HPLC chromatograms of cochliomycin A and zeaenol.
Acknowledgments
Financial support from the Council of Scientific and Industrial Re-
search (CSIR) India is gratefully acknowledged [Grant: 02(0020)/
11/EMR-II]. We are also thankful to the Department of Science
and Technology (DST) India (IRPHA) for NMR instruments. N. J.
is thankful to CSIR-India for providing a research fellowship.
[1] P. Delmotte, J. Delmotte-Plaquee, Nature 1953, 171, 344–344.
[2] M. Stob, R. S. Baldwin, J. Tuite, F. N. Andrews, K. G. Gillette,
Nature 1962, 196, 1318–1318.
[3] G. A. Ellestad, F. M. Lovell, N. A. Perkinson, R. T. Harg-
reaves, W. J. McGahren, J. Org. Chem. 1978, 43, 2339–2343.
[4] M. S. R. Nair, S. T. Carey, Tetrahedron Lett. 1980, 21, 2011–
2012.
[5] N. Winssinger, S. Barluenga, Chem. Commun. 2007, 22–36.
[6] M. Isaka, C. Suyarnsestakorn, M. Tanticharoen, P. Kongsa-
eree, Y. Thebtaranonth, J. Org. Chem. 2002, 67, 1561–1566.
[7] a) V. Hellwig, A. Mayer-Bartschmid, H. Müller, G. Greif, G.
Kleymann, W. Zitzmann, H.-V. Tichy, M. Stadler, J. Nat. Prod.
2003, 66, 829–837; b) H. Shining, Y. Kawamura, A. Ikeda, M.
Aoki, N. Sakai, N. Fujimoto, A. Kawashima, Tetrahedron
2009, 65, 3446–3453.
37.4 (CH ), 27.17 (Me), 27.13 (Me), 19.9 (Me) ppm. IR: ν = 3438,
˜
2
2922, 2852, 2364, 1634 cm–1. HRMS (ESI): calcd. for C24H32O7Na
[M + Na]+ 455.2046; found 455.2040.
Cochliomycin A: The ester 28 (180 mg, 0.416 mmol) was taken up
in anhydrous degassed DCM (200 mL). The second-generation
Grubbs metathesis catalyst (25 mg, 0.029 mmol, 7 mol-%) was
added and the reaction mixture was allowed to stir at 40 °C for
6 h. The solution was concentrated and the contents of the flask
were directly loaded on a silica gel column. Flash chromatography
with ethyl acetate/petroleum ether (1:5) afforded pure cochliomy-
cin A in 72% yield as white solid (m.p. 68 °C). [α]3D0 = +10.6 (c =
[8] L. X. Xu, Z. X. He, J. H. Xue, X. P. Chen, X. Y. Wei, J. Nat.
Prod. 2010, 73, 885–889.
[9] W. T. Shier, A. C. Shier, W. Xie, C. J. Mirocha, Toxicon 2001,
39, 1435–1438.
[10] M. Isaka, A. Yangchum, S. Intamas, K. Kocharin, E. B. G.
Jones, P. Kongsaeree, S. Prabpai, Tetrahedron 2009, 65, 4396–
4403.
[11] a) W. A. Ayer, S. P. Lee, A. Tsuneda, Y. Hiratsuka, Can. J.
Microbiol. 1980, 26, 766–773.
[12] a) H. Boettger-Tong, L. Murthy, C. Chiappetta, J. L. Kirkland,
B. Goodwin, H. Adlercreutz, G. M. Stancel, S. Makela, Envi-
ron. Health Perspect. 1998, 106, 369–373; b) B. S. Katzenellen-
bogen, J. A. Katzenellenbogen, D. Mordecai, Endocrinology
1979, 105, 33–40.
[13] J. Dong, Y. Zhu, H. Song, R. Li, H. He, H. Liu, R. Huang, Y.
Zhou, L. Wang, Y. Cao, K. Zhang, J. Chem. Ecol. 2007, 33,
1115–1126.
[14] a) E. S. Abid, Z. Ouanes, W. Hassen, I. Baudrimont, E.
Creppy, H. Bacha, Toxicol. in vitro 2004, 18, 467–474; b) A.
Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130–
9136; c) H. J. Kwon, M. Yoshida, K. Abe, S. Horinouchi, T.
Beppu, Biosci. Biotechnol. Biochem. 1992, 56, 538–539; d) P.
Chanmugam, L. Feng, S. Liou, B. C. Jang, M. Boudreau, G.
Yu, J. H. Lee, H. J. Kwon, T. Beppu, M. Yoshida, Y. Xia, C. B.
Wilson, D. Hwang, J. Biol. Chem. 1995, 270, 5418–5426; e) K.
Takehara, S. Sato, T. Kobayashi, T. Maeda, Biochem. Biophys.
Res. Commun. 1999, 257, 19–23; f) N. A. Giese, N. Lokker,
Int. Pat. WO9613259, 1996 [Chem. Abst. 1996, 457801]; g) J.
Nonomiya-Tsuji, T. Kajino, K. Ono, T. Ohtomo, M. Matsum-
oto, M. Shiina, M. Mihara, M. Tsuchiya, K. Matsumoto, J.
Biol. Chem. 2003, 278, 18485–18490.
[15] F. Sugawara, K. W. Kim, K. Kobayashi, J. S. Yoshida, N. Mur-
fushi, N. Takahashi, G. A. Strobel, Phytochemistry 1992, 31,
1987–1990.
[16] C. L. Shao, H. X. Wu, C. Y. Wang, Q. A. Liu, Y. Xu, M. Y.
Wei, P. Y. Qian, Y. C. Gu, C. J. Zheng, Z. G. She, Y. C. Lin, J.
Nat. Prod. 2011, 74, 629–633.
1
0.5, MeOH). H NMR (400 MHz, CDCl3): δ = 11.5 (s, 1 H), 7.16
(dd, J = 15.2, 2.4 Hz, 1 H), 6.47 (d, J = 2.4 Hz, 1 H), 6.39 (d, J =
2.4 Hz, 1 H), 5.98 (ddd, J = 15.0, 8.4, 4.8 Hz, 1 H), 5.72 (ddd, J =
15.2, 10.2, 2.8 Hz, 1 H), 5.55–5.48 (m, 1 H), 5.47–5.43 (m, 1 H),
4.56 (t, J = 8.0 Hz, 1 H), 4.23–4.19 (m, 1 H), 3.91–3.88 (m, 1 H),
3.81 (s, 3 H), 2.78–2.74 (br., 1 H), 2.55–2.24 (m, 4 H), 1.45 (s, 3
H), 1.44 (d, J = 6.4 Hz, 3 H), 1.37 (s, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 170.9, 164.9, 164.0, 142.2, 134.1 (CH),
132.8 (CH), 129.7 (CH), 126.6 (CH), 108.5, 107.2 (CH), 104.5,
100.2 (CH), 81.6 (CH), 75.4 (CH), 70.6 (CH), 69.0 (CH), 55.5 (Me),
38.0 (CH2), 36.9 (CH2), 27.20 (Me), 27.18 (Me), 19.4 (Me) ppm.
IR: ν = 3401, 2929, 2365, 2341, 1680 cm–1. HRMS (ESI): calcd.
˜
for C22H28O7Na [M + Na]+ 427.1733; found 427.1727.
Zeaenol: HCl (2 n, 10 mL) was added to a solution of cochliomy-
cin A (80 mg, 0.198 mmol) in THF (10 mL) and the mixture was
stirred for 20 h, quenched with saturated aqueous NaHCO3 solu-
tion, and extracted with EtOAc. The organic layers were combined
and dried with anhydrous MgSO4, filtered, and concentrated under
reduced vacuum. The crude product was purified by flash column
chromatography with ethyl acetate/petroleum ether (3:2) to yield
zeaenol as a white powder (66 mg, 92%). [α]3D0 = –82.0 (c = 0.9,
1
MeOH). H NMR (400 MHz, CDCl3/CD3OD = 9:1): δ = 11.92 (s,
1 H), 7.06 (d, J = 15.2 Hz, 1 H), 6.4 (s, 1 H), 6.32 (s, 1 H), 5.96–
5.82 (m, 2 H), 5.63–5.58 (m, 1 H), 5.30–5.27 (m, 1 H), 4.14–4.05
(m, 1 H), 3.80–3.76 (4 H), 3.52–3.5 (m, 1 H), 2.66–2.56 (br., 3 H,
–OH), 2.52–2.14 (m, 4 H), 1.41 (d, J = 6.0 Hz, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 171.1, 164.9, 163.9, 142.9, 133.3 (CH),
131.1 (CH), 129.1 (CH), 128.6 (CH), 107.5 (CH), 103.7, 99.9 (CH),
77.3 (CH), 77.1 (CH), 73.2 (CH), 71.3 (CH), 55.3 (Me), 37.4 (CH2),
[17] a) I. Navarro, J. F. Basset, S. Hebbe, S. M. Major, T. Werner,
C. Howsham, J. Brackow, A. G. M. Barett, J. Am. Chem. Soc.
2008, 130, 10293–10298; b) F. Calo, J. Richardson, A. G. M.
Barett, Org. Lett. 2009, 11, 4910–4913; c) S. Sugiyama, S. Fuse,
35.7 (CH ), 19.3 (Me) ppm. IR: ν = 3442, 2932, 2852, 1696,
˜
2
1598 cm–1. HRMS (ESI): calcd. for C19H24O7Na [M + Na]+
387.1420; found 387.1422.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7