Page 3 of 4
ChemComm
50 aDepartment of Chemistry, National Taiwan University, Taipei 10617,
solvent treatment, the process was followed using TEM. The
Taiwan. Fax +886 2 33661667; Tel: +886 2 33661665; E-mail:
transition from rod-like to spherical aggregates upon exposure to
THF is shown in Figure 5. By treatment of the spherical
aggregates (Figure 5b) twice with methanol (5 µL), most
bResearch Center for Applied Sciences, Academia Sinica, Taipei 115,
Taiwan.
5
transform back to rod-like aggregates (Figure 5c, d). Within the 55 cUniv. Bordeaux, ISM, CNRS UMR 5255, 351, Cours de la Libération,
33400 Talence, France.
same substrate, a small portion of architectures that may
correspond to the transition from the spherical to the rod-like
morphology are also observed. Their morphology suggests that
the transition occurs by fusion of the spherical aggregates into
† Electronic Supplementary Information (ESI) available: Synthesis,
1
characterization, H, 13C NMR spectra for 5b, 1b, 2, 3 , crystal structure
parameters for 1b (CCDC 881738) and
4 (CCDC 881739). See
60 DOI: 10.1039/b000000x/
10 needles (Figure 5e), which then grow in length. In addition, larger
and more complex assemblies involving hierarchical aggregation
of the rods onto thin sheets (Figures 5f~h) were also observed.
This phenomenon resembles the merging behavior exhibited by
1b aggregates in the presence of methanol. More importantly, the
15 interconversion between vesicle and rod-like aggregates is
reversible by switching between THF and methanol.
1
(a) J. Jiang and D. K. P. Ng, Acc. Chem. Res. 2009, 42, 79. (b) W.
Zhang, W. S. Jin, T. Fukushima, A. Saeki, S. Seki and T. Aida,
Science 2011, 334, 340.
65 2 (a) L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H.
Friend and J. D. MacKenzie, Science 2001, 293, 1119. (b) R.
Bhosale, J. Misek, N. Sakai and S. Matile, Chem. Soc. Rev. 2010, 39,
138. (c) B. A. Gregg, J. Phys. Chem. B 2003, 107, 4688.
3
(a) A. C. Grimsdale and K. Müllen, Angew. Chem., Int. Ed. 2005, 44,
5592. (b) M. Sauer, Angew. Chem., Int. Ed. 2003, 42, 1790. (c) M.
W. Holman, R. Liu, L. Zang, P. Yan, S. A. DiBenedetto, R. D.
Bowers and D. M. Adams, J. Am. Chem. Soc. 2004, 126, 16126.
(a) S. Mann, Nat Mater. 2009, 8, 781. (b) A. Ciesielski, C. A. Palma,
M. Bonini and P. Samori, Adv. Mat. 2010, 22, 3506. (c) T. Aida, E.
W. Meijer and S. I. Stupp, Science 2012, 335, 813.
70
75
80
4
5
6
Ke, D.; Zhan, C.; Li, A. D. Q.; Yao, J. Angew. Chem. Int. Ed. 2011,
50, 3715.
(a) Y. Tidhar, H. Weissman, S. G. Wolf, A. Gulino and B.
Rybtchinski, Chem. Eur. J. 2011, 17, 6068. (b) S. Yagai, Y. Nakano,
S. Seki, A. Asano, T. Okubo, T. Isoshima, T. Karatsu, A. Kitamura
and Y. Kikkawa, Angew. Chem. Int. Ed. 2010, 49, 9990.
C. B. Minkenberg, F. Li, P. van Rijn, L. Florusse, J. Boekhoven, M.
C. A. Stuart, G. J. M. Koper, R. Eelkema and H. J. van Esch, Angew.
Chem. Int. Ed. 2011, 50, 3421.
Fig. 5 Evolutionary TEM images for the transition of 3 at room
temperature. (a) As cast film from THF/MeOH (2:5, v/v). (b) After THF
20 (2 × 5 µL) treatment from as cast film. (c)-(h) show evolutionary
progression of morphological transition from hollow spheres to sheet
aggregates after MeOH (2 × 5 µL) treatment from (b). All solvent
treatments were directly done on the same substrate.
7
85 8 Q. Chen, Y. Feng, D. Zhang, G. Zhang, Q. Fan, S. Sun and D. Zhu,
Adv. Funct. Mater. 2010, 20, 36.
Y. Gao, X. Zhang, C. Ma, X. Li and J. Jiang, J. Am. Chem. Soc. 2008,
130, 17044.
9
In summary, we have developed a porphyrin derivative
25 incorporating amphipathic groups whose self-assembly can be
reversibly controlled through exposure to different solvents. Polar
protic environments disrupt H-B interactions between the biuret
groups and favor the hydrophobic interactions between the octyl
chains (van der Waals forces), leading to the formation of rod-
30 like aggregates. The reverse occurs in less polar aprotic media,
which favor H-B over hydrophobic interactions and induce the
formation of spherical aggregates. These results are in agreement
with model systems that show that the rod-like and spherical
aggregates arise from hydrophobic and H-B interactions,
35 respectively. The switching between aggregate morphologies in 3
is thus understood on the basis of solvent favoritism for specific
functional groups. Of particular interest is the fact that the
process is entirely reversible and that it can be conducted directly
onto the substrate analogously to solvent annealing procedures.
40 Given the large difference in morphology between the spherical
and rod-like aggregates, we believe the transition occurs via
(partial) dissolution of the material in the liquid phase.
10 (a) G. De Luca, A. Liscio, P. Maccagnani, F. Nolde, V. Palermo, K.
Müllen and P. Samorì, Adv. Funct. Mat. 2007, 17, 3791; (b) E.
Treossi, A. Liscio, X. Feng, V. Palermo, K. Müllen and P. Samori,
Small, 2009, 5, 112.
11 (a) N. M. Sangeetha and U. Maitra, Chem. Soc. Rev. 2005, 34, 821.
(b) H. Xu and X. Zhang, in Supramolecular Soft Matter:
Applications in Materials and Molecular Electronics; T. Nakanishi,
Ed. Wiley: Hoboken, 2011.
90
95
12 Recently,
a block co-polymer was shown to exhibit in-situ
transformation from inverted to normal spheres, see: M. T. Islam, M.
R. Islam and K. T. Lim, Polymer, 2011, 52, 5212.
100 13 (a) C. M. Drain, A. Varotto and I. Radivojevic, Chem. Rev. 2009, 109,
1630. (b) C. J. Medforth, Z. Wang, K. E. Martin, Y. Song, J. L.
Jacobsen and J. A. Shelnutt, Chem. Commun. 2009, 7261.
14 F.-C. Fang, C.-C. Chu, C.-H. Huang, G. Raffy, A. Del Guerzo, K.-T.
Wong and D. M. Bassani, Chem. Commun. 2008, 6369.
105 15 K.-P. Tseng, F.-C. Fang, J.-J. Shyue, K.-T. Wong, G. Raffy, A. Del
Guerzo and D. M. Bassani, Angew. Chem. Int. Ed. 2011, 50, 7032.
16 T. H. Han, T. Ok, J. Kim, D. O. Shin, H. Ihee, H.-S. Lee and S. O.
Kim, Small 2010, 6, 945.
17 M. Kastler, W. Pisula, D. Wasserfallen, T. Pakula and K. Müllen, J.
110
115
120
Am. Chem. Soc. 2005, 127, 4286.
18 A small drop of the solvent (10 µL) was gently deposited onto the
substrate and allowed to evaporate under argon.
19 (a) Y. Li, X. Li, Y. Li, H. Liu, S. Wang, H. Gan, J. Li, N. Wang, X.
He and D. Zhu, Angew. Chem. Int. Ed. 2006, 45, 3639. (b) X. Gong,
T. Milic, C. Xu, J. D. Batteas and C. M. Drain, J. Am. Chem. Soc.
2002, 124, 14290.
20 M. Morisue, T. Morita and Y. Kuroda, Org. Biomol. Chem. 2010, 8,
3457.
The authors gratefully acknowledge the financial support from
National Science Council of Taiwan (NSC-99-2923-M-002-002-
45 MY3) and the Agence Nationale de la Recherche (ANR-09-
BLAN-0387) and technical assistant of Technology Commons,
College of Life Science and Precision Instrumentation Center,
NTU with TEM analysis.
21 T. Kiba, H. Suzuki, K. Hosokawa, H. Kibayashi, S. Baba, T. Kakuchi
and S. Sato. J. Phys. Chem. B, 2009, 113, 11560.
Notes and references
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3