LETTER
Highly Substituted Isoindolone and Isoindoline Derivatives
1905
Isoindoline 5a
(C), 96.9 (CH), 114.7 (C), 117.3 (CH), 121.5 (C), 123.3 (CH), 153.1
(C), 188.7 (C).
1H NMR (300 MHz, CDCl3): δ = 2.05–2.13 (m, 1 H), 2.34 (s, 3 H),
2.76–2.82 (m, 1 H), 2.86–2.91 (m, 2 H), 3.31 (s, 3 H), 3.33–3.38 (m,
2 H), 3.47 (s, 3 H), 3.61 (s, 3 H), 4.91 (d, J = 2.1 Hz, 1 H). 13C NMR
(100 MHz, CDCl3): δ = 37.5 (CH), 41.9 (CH3), 46.2 (CH), 50.9
(CH3), 51.5 (CH3), 54.9 (CH2), 55.2 (CH3), 62.7 (CH2), 98.3 (C),
102.7 (CH), 151.7 (C), 202.2 (C).
Isoindoline 8b
1H NMR (400 MHz, CDCl3): δ = 1.90 (s, 3 H), 3.27 (s, 6 H), 6.56–
6.58 (m, 2 H), 6.44–6.45 (m, 1 H), 8.76 (br s, 1 H). 13C NMR (100
MHz, CDCl3): δ = 16.8 (CH3), 51.1 (2 × CH3), 114.3 (CH), 119.6
(C), 121.3 (CH), 122.1 (CH), 123.1 (2 × C), 135.7 (C), 190.6 (C).
Isoindoline 5b
1H NMR (400 MHz, CDCl3): δ = 1.78 (dd, J = 1.2, 2.4 Hz, 3 H),
2.23 (dd, J = 6.0, 8.4 Hz, 1 H), 2.32 (s, 3 H), 2.63 (app dd, J = 8.4,
9.6 Hz, 1 H), 2.72–2.76 (m, 1 H), 2.90 (dd, J = 5.2, 9.6 Hz, 1 H),
3.25 (s, 3 H), 3.32–3.39 (m, 2 H), 3.40 (s, 3 H), 5.70–5.73 (m, 1 H).
13C NMR (100 MHz, CDCl3): δ = 18.9 (CH3), 40.9 (CH), 41.9
(CH3), 46.2 (CH), 49.7 (CH3), 50.8 (CH3), 55.2 (CH2), 61.9 (CH2),
99.6 (C), 133.3 (CH), 136.0 (C), 204.0 (C).
Isoindoline 9e
1H NMR (400 MHz, CDCl3): δ = 0.78 (s, 3 H), 1.24 (s, 3 H), 3.38
(s, 6 H), 3.66 (ABq, J = 10.8 Hz, 4 H), 5.01 (s, 2 H), 5.13 (d, J = 0.8
Hz, 1 H), 6.05 (d, J = 0.8 Hz, 1 H), 6.79 (d, J = 2.0 Hz, 1 H), 7.18–
7.21 (m, 2 H), 7.29–7.36 (m, 4 H). 13C NMR (100 MHz, CDCl3):
δ = 21.8 (CH3), 23.2 (CH3), 30.3 (C), 50.6 (2 × CH3), 54.1 (CH2),
77.5 (2 × CH2), 94.8 (C), 100.7 (CH), 119.2 (CH), 120.4 (C), 124.2
(CH), 125.2 (CH), 127.8 (2 × CH), 128.4 (CH), 129.0 (2 × CH),
133.2 (2 × C), 135.4 (C), 188.3 (C).
Isoindoline 5e
1H NMR (300 MHz, CDCl3): δ = 0.74 (s, 3 H), 1.19 (s, 3 H), 2.06
(t, J = 9.6 Hz, 1 H), 2.36 (s, 3 H), 2.78 (dd, J = 6.6, 9.6 Hz, 1 H),
3.02 (app dd, J = 9.6, 9.6 Hz, 1 H), 3.11–3.17 (m, 1 H), 3.29 (s, 3
H), 3.40 (s, 3 H), 3.43–3.49 (m, 2 H), 3.52–3.64 (m, 4 H), 4.76 (s, 1
H), 6.06 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 21.8 (CH3),
23.1 (CH3), 30.2 (C), 42.1 (CH3), 42.8 (CH), 46.9 (CH), 50.0 (CH3),
50.3 (CH3), 54.6 (CH2), 60.5 (CH2), 77.3 (CH2), 77.5 (CH2), 96.4
(C), 101.0 (CH), 125.7 (CH), 143.2 (C), 203.7 (C).
References and Notes
(1) (a) Magdziak, D.; Meek, S. J.; Pettus, T. R. R. Chem. Rev.
2004, 104, 1383. (b) Liao, C.-C.; Peddinti, R. K. Acc. Chem.
Res. 2002, 35, 856. (c) Singh, V. Acc. Chem. Res. 1999, 32,
324.
(2) (a) Hsu, D.-S.; Chou, Y.-Y.; Tung, Y.-S.; Liao, C.-C. Chem.
Eur. J. 2010, 16, 3121. (b) Lu, P.-H.; Yang, C.-S.; Devendar,
B.; Liao, C.-C. Org. Lett. 2010, 12, 2642. (c) Kao, T.-C.;
Chuang, G. J.; Liao, C.-C. Angew. Chem. Int. Ed. 2008, 47,
7325. (d) Liao, C.-C. Pure Appl. Chem. 2005, 77, 1221.
(3) (a) Sacher, J. R.; Weinreb, S. M. Tetrahedron 2011, 67,
10203. (b) Mehta, G.; Maity, P. Tetrahedron Lett. 2011, 52,
1749. (c) Kobayashi, S.; Suzuki, T. Org. Lett. 2010, 12,
2920. (d) Cook, S. P.; Polara, A.; Danishefsky, S. J. J. Am.
Chem. Soc. 2006, 128, 16440.
Isoindoline 6e
1H NMR (400 MHz, CDCl3): δ = 0.74 (s, 3 H), 1.20 (s, 3 H), 2.29
(s, 3 H), 2.41 (d, J = 9.6 Hz, 1 H), 2.48 (t, J = 9.6 Hz, 1 H), 2.71 (t,
J = 9.6 Hz, 1 H), 3.11 (s, 3 H), 3.27–3.29 (m, 1 H), 3.31 (s, 3 H),
3.33–3.45 (m, 2 H), 3.52 (d, J = 11.2 Hz, 1 H), 3.61 (dd, J = 2.8,
10.8 Hz, 1 H), 3.75 (dd, J = 2.8, 10.8 Hz, 1 H), 4.64 (s, 1 H), 5.99
(d, J = 10.4 Hz, 1 H), 6.73 (dd, J = 1.2, 10.4 Hz, 1 H). 13C NMR (75
MHz, CDCl3): δ = 21.7 (CH3), 23.0 (CH3), 30.4 (C), 42.2 (CH3),
44.1 (CH), 48.4 (CH3), 50.2 (CH3), 52.7 (C), 55.6 (CH2), 61.6
(CH2), 77.8 (2 × CH2), 97.7 (C), 102.3 (CH), 125.5 (CH), 151.3
(CH), 193.0 (C).
(4) (a) Chittimalla, S. K.; Shiao, H.-Y.; Liao, C.-C. Org.
Biomol. Chem. 2006, 4, 2267. (b) Liao, C.-C.; Chu, C.-S.;
Lee, T.-H.; Rao, P. D.; Ko, S.; Song, L.-D.; Hsiao, H.-C.
J. Org. Chem. 1999, 64, 4102.
Isoindoline 7b
1H NMR (400 MHz, CDCl3): δ = 2.25 (s, 3 H), 2.56 (s, 3 H), 3.73
(5) (a) Lai, C.-H.; Shen, Y.-L.; Wang, M.-N.; Rao, N. S. K.;
Liao, C.-C. J. Org. Chem. 2002, 67, 6493. (b) Yen, C.-F.;
Peddinti, R. K.; Liao, C.-C. Org. Lett. 2000, 2, 2909.
(6) (a) Liao, C.-C.; Wei, C.-P. Tetrahedron Lett. 1991, 32, 4553.
(b) Hsieh, M.-F.; Rao, P. D.; Liao, C.-C. Chem. Commun.
1999, 1441. (c) Hou, H.-F.; Peddinti, R. K.; Liao, C.-C. Org.
Lett. 2002, 4, 2477. (d) Runcie, K. A.; Taylor, R. J. K. Org.
Lett. 2001, 3, 3237. (e) McKillop, A.; Perry, D. H.; Edwards,
M.; Antus, S.; Farkas, L.; Nogradi, M.; Taylor, E. C. J. Org.
Chem. 1976, 41, 282. (f) Banwell, M. G.; Collis, M. P.
J. Chem. Soc., Chem. Commun. 1991, 1343. (g) Mitchell,
A. S.; Russell, R. A. Tetrahedron 1997, 53, 4387.
(7) (a) Tsuge, O.; Kanemasa, S.; Ohe, M.; Takenaka, S. Bull.
Chem. Soc. Jpn. 1987, 60, 4079. (b) Joucla, M.; Martier, J.
J. Chem. Soc., Chem. Commun. 1985, 1566.
(8) (a) Smith, N. D.; Huang, D.; Cosford, N. D. P. Org. Lett.
2002, 4, 3537. (b) Airaksinen, A. J.; Ahlgren, M.;
(s, 3 H), 3.82–3.84 (m, 2 H), 3.88–3.91 (m, 2 H), 6.52 (s, 1 H). 13
C
NMR (100 MHz, CDCl3): δ = 15.9 (CH3), 42.5 (CH3), 58.1 (CH2),
60.5 (CH3), 60.9 (CH2), 115.4 (CH), 124.6 (C), 129.4 (C), 137.2
(C), 143.7 (C), 144.5 (C).
Isoindoline 7e
1H NMR (300 MHz, CDCl3): δ = 0.78 (s, 3 H), 1.27 (s, 3 H), 2.56
(s, 3 H), 3.66 (ABq, J = 10.8 Hz, 4 H), 3.83 (s, 3 H), 3.89 (br s, 2 H),
3.98 (br s, 2 H), 4.84 (br s, 1 H), 5.28 (s, 1 H), 6.89 (s, 1 H). 13C
NMR (75 MHz, CDCl3): δ = 21.9 (CH3), 23.2 (CH3), 30.2 (C), 42.7
(CH3), 56.2 (CH3), 57.7 (CH2), 59.7 (CH2), 77.6 (2 × CH2), 100.7
(CH), 107.5 (CH), 123.6 (C), 126.5 (C), 132.1 (C), 140.9 (C), 145.8
(C).
Typical Experimental Procedure for the Synthesis of Isoin-
doline 8a
To a solution of 2a (185 mg, 1.0 mmol) and TOSMIC (255 mg, 1.3
mmol) in dry THF (6.0 mL) was added KOt-Bu (225 mg, 2.0 mmol)
at r.t. The reaction mixture was allowed to stir at r.t. until the disap-
pearance of MOB 2a as indicated by TLC analysis. Solvent was
evaporated, sat. aq NH4Cl was added to the residue and extracted
with EtOAc (3×). Organic layers were dried over Na2SO4, filtered,
the solvent evaporated, and the residue was chromatographed over
silica gel using CH2Cl2–MeOH as eluent to give isoindoline 8a in
73% yield.
Vepsalainen, J. J. Org. Chem. 2002, 67, 5019. (c) van
Leusen, A. M.; Siderius, H.; Hoogenboom, B. E.; van
Leusen, D. Tetrahedron Lett. 1972, 52, 5337.
(9) (a) Pokholenko, A. A.; Voitenka, Z. V.; Kovtunenko, V. A.
Russ. Chem. Rev. 2004, 73, 771. (b) Marinicheva, G. E.;
Gubina, T. I. Chem. Heterocycl. Compd. 2004, 40, 1517.
(c) Kovacs, B.; Pinegar, L. A. US 20090318520 A1, 2009.
(d) Concha-Herrera, V.; Vivo-Truyols, G.; Torres-Lapasio,
J. R.; Garcia-Alvarez-Coque, M. C. Anal. Chim. Acta 2004,
518, 191. (e) Williams, B. J.; Williams, M.; Frederickson,
M. US 20110098290 A1, 28.04.2011. (f) Jin, Q. WO
2010102968 A1, 16.09.2010. (g) Liu, J.; Yang, Y.; Ji, R.
Isoindoline 8a
1H NMR (300 MHz, CDCl3): δ = 3.37 (s, 6 H), 3.78 (s, 3 H), 5.86
(s, 1 H), 6.54–6.61 (m, 1 H), 7.40–7.47 (m, 1 H), 8.62 (br s, 1 H).
13C NMR (100 MHz, CDCl3): δ = 51.9 (2 × CH3), 55.5 (CH3), 95.8
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1901–1906