calculated using a Hyperquad program based on the fluorescence
titration data,8 giving 7.33 ꢂ 102 Mꢁ1 for (5aꢀClꢁ), 1.67 ꢂ 102 Mꢁ1
for (5aꢀBrꢁ), 1.68 ꢂ 103 Mꢁ1 for (5aꢀN3ꢁ), 6.84 ꢂ 102 Mꢁ1 for
(5aꢀNO3ꢁ), 2.93 ꢂ 102 Mꢁ1 for (5aꢀHSO4ꢁ) and 6.04 ꢂ
103 Mꢁ1 for (5aꢀH2PO4ꢁ), respectively. Surprisingly, the
response of 5b towards anions based on the fluorescence titration
was very different from that of 5a. For example, the addition of
b = 106.571, g = 90.001, V = 2967 (10) A3, T = 173(2) K, full-matrix
least-squares refinement on F2 converged to RF = 0.1296 [I > 2s(I)],
0.1540 (all data) and Rw(F2) = 0.2943 [I > 2s(I)], 0.3110 (all data),
goodness of fit 1.386. CCDC 897874. Crystallographic data for complex
5aꢀ(Et4NCl)ꢀH2O (C38H40ClN7O7): Mr = 742.22, triclinic, space group
76.08(3)1, g = 86.191, V = 1828.6 (6) A3, T = 173(2) K, full-matrix least-
squares refinement on F2 converged to RF = 0.0508 [I > 2s(I)], 0.0610
(all data) and Rw(F2) = 0.1127 [I > 2s(I)], 0.1183(all data), goodness of
fit 1.110. CCDC 897875.
%
P1, a = 12.102 (2), b = 12.290 (3), c = 13.841 (3) A, a = 66.291, b =
anions such as, Clꢁ, Brꢁ, NO3ꢁ, HSO4 and H2PO4 did not
ꢁ
ꢁ
ꢁ
change the fluorescence of 5b at all, whereas the addition of N3
1 For reviews on anion–p interaction, see: (a) P. Gamez, T. J. Mooibroek,
S. J. Teat and J. Reedijk, Acc. Chem. Res., 2007, 40, 435;
(b) B. L. Schottel, H. T. Chifotides and K. R. Dunbar, Chem. Soc.
Rev., 2008, 37, 68; (c) B. P. Hay and V. S. Bryantsev, Chem. Commun.,
2008, 2417; (d) P. Ballester, in Recognition of Anions, ed. R. Vilar,
Springer-Verlag Berlin Heidelberg, 2008, p. 127; (e) L. M. Salonen,
M. Ellermann and F. Diederich, Angew. Chem., Int. Ed., 2011, 50, 4808;
(f) A. Robertazzi, F. Krull, E.-W. Knapp and P. Gamez, CrystEngComm,
2011, 13, 3293; (g) O. B. Berryman and D. W. Johnson, Chem. Commun.,
2009, 3143; (h) A. Frontera, P. Gamez, M. Mascal, T. J. Mooibroek and
J. Reedijk, Angew. Chem., Int. Ed., 2011, 50, 9564; (i) D.-X. Wang and
M.-X. Wang, Chimia, 2011, 65, 939; (j) D. Quinonero, P. M. Deya,
M. P. Carranza, A. M. Rodriguez, F. A. Jalon and B. R. Manzano,
Dalton Trans., 2010, 39, 794; (k) D. Quinonero, A. Frontera and
P. M. Deya, in Anion Coordination Chemistry, ed. K. Bowman-James,
led to quenching of the fluorescence inteꢁnsity at 360 nm, indicating
a selective interaction of 5b with N3 (Fig. S4B, ESIw). The
calculated association constant (Ka(1 : 1)) for the complex of 5b
with N3 was up to 1.95 ꢂ 104 Mꢁ1
.
ꢁ
We further examined the interaction between host molecules 5a,
5b and the anions by means of NMR spectroscopy. No variation
at all in the 1H NMR spectra of 5a occurred with the addition of
anions (Fig. S14–S19, ESIw). The result is consistent with our
previous observation, reflecting that anion–p interactions are
responsible for the change of fluorescence spectrum of the host
molecule.3d,4d,7 In the case of 5b (Fig. S20–S25, ESIw), whereas the
proton signals remained intact with the addition of other anions,
the addition of 0.25 to 1 equivalent of azide, however, resulted
in the observation of many signals, which most probably indicated
the conformational changes after complexation (Fig. S22, ESIw).
The formation of a complex between host 5b and azide was
further evidenced by the observation of an upfield shift of 19F
signals (Fig. S26, ESIw). The outcomes of both spectroscopic
titration and NMR experiments indicated that the interaction
between azide and 5b is most probably different from that of 5a.
Last but not least, the interaction of host molecules 5a and 5b with
anions was also evidenced by the observation of ion peaks of the
complexes in ESI mass spectra (see Fig. S27–S33, ESIw).
´
A. Bianchi and E. Carcıa-Espana, Wiley-VCH Verlag GmbH&Co.
KgaA, 2012.
2 (a) M. Mascal, A. Armstrong and M. D. Bartberger, J. Am. Chem.
Soc., 2002, 124, 6274; (b) D. Quinonero, C. Garau, C. Rotger,
A. Frontera, P. Ballester, A. Costa and P. M. Deya, Angew. Chem.,
Int. Ed., 2002, 41, 3389; (c) I. Alkorta, I. Rozas and J. Elguero,
J. Am. Chem. Soc., 2002, 124, 8593; (d) D. Kim, P. Tarakeshwar and
K. S. Kim, J. Phys. Chem. A, 2004, 108, 1250.
3 (a) Y. S. Rosokha, S. V. Lindeman, S. V. Rosokha and J. K. Kochi,
Angew. Chem., Int. Ed., 2004, 43, 4650; (b) B. Han, J. Lu and
J. K. Kochi, Cryst. Growth Des., 2008, 8, 1327; (c) O. B. Berryman,
V. S. Bryantsev, D. P. Stay, D. W. Johnson and B. P. Hay, J. Am.
Chem. Soc., 2007, 129, 48; (d) D.-X. Wang, Q.-Y. Zheng,
Q.-Q. Wang and M.-X. Wang, Angew. Chem., Int. Ed., 2008,
47, 7485; (e) H. T. Chifotides, B. L. Schottel and K. R. Dunbar,
Angew. Chem., Int. Ed., 2010, 49, 7202.
In summary, we have synthesized phenoxy- and perfluoro-
phenoxy-substituted oxacalix[2]arene[2]triazine derivatives 5a and
5b. In the solid state, 5a and 5b formed a unique cyclic hexamer and
non-covalently bonded dimer structure, respectively. In the presence
of chloride, the cyclic hexamer of 5a was turned into a rectangular
supramolecular cage structure due to the formation of chloride–p,
H2O:–p, hydrogen bonding (ClꢀꢀꢀH–O) and p–p stacking inter-
actions. On the basis of fluorescence titration, the host molecule 5a
was found to be able to interact with the examined anions
in solution, giving association constants (Ka(1 : 1)) in the range of
4 (a) O. B. Berryman, F. Hof, M. J. Hynes and D. W. Johnson, Chem.
Commun., 2006, 506; (b) O. B. Berryman, A. C. Sather, B. P. Hay,
J. S. Meisner and D. W. Johnson, J. Am. Chem. Soc., 2008,
130, 10895; (c) G. Gil-Ramirez, E. C. Escudero-Adan, J. Benet-
´
Buchholz and P. Ballester, Angew. Chem., Int. Ed., 2008, 47, 4114;
(d) D.-X. Wang, Q.-Q. Wang, Y. Han, Y. Wang, Z.-T. Huang and
M.-X. Wang, Chem.–Eur. J., 2010, 16, 13053; (e) S. Guha and
S. Saha, J. Am. Chem. Soc., 2010, 132, 17674; (f) B. Chiavarino,
M. E. Crestoni, S. Fornarini, F. Lanucara, J. Lemaire, P. Maıtre
and D. Scuderi, Chem.–Eur. J., 2009, 15, 8185; (g) S. Guha,
F. S. Goodson, S. Roy, L. J. Corson, C. A. Gravenmier and
S. Saha, J. Am. Chem. Soc., 2011, 133, 15256.
5 (a) R. E. Dawson, A. Hennig, D. P. Weimann, D. Emery, V. Ravikumar,
J. Montenegro, T. Takeuchi, S. Gabutti, M. Mayor, J. Mareda,
C. A. Schalley and S. Matile, Nat. Chem., 2010, 2, 533; (b) V. Gorteau,
G. Bollot, J. Mareda, A. Perez-Velasco and S. Matile, J. Am. Chem. Soc.,
2006, 128, 14788; (c) V. Gorteau, G. Bollot, J. Mareda and S. Matile,
Org. Biomol. Chem., 2007, 5, 3000.
6 For reviews on heteracalixaromatics see: (a) M.-X. Wang, Chem.
Commun., 2008, 4541; (b) W. Maes and W. Dehaen, Chem. Soc.
Rev., 2008, 37, 2393; (c) H. Tsue, K. Ishibashi and R. Tamura, Top.
Heterocycl. Chem., 2008, 17, 73; (d) M.-X. Wang, Acc. Chem. Res.,
2012, 45, 182; (e) J. Thomas, W. V. Rossom, K. V. Hecke,
L. V. Meervelt, M. Smet, W. Maes and W. Dehaen, Chem. Commun.,
1.67 ꢂ 102 Mꢁ1 to 6.04 ꢂ 103
M
ꢁ1. Whereas 5b selectively
recognized azide with an association constant of up to 1.95 ꢂ
104
M
ꢁ1. The present study indicated that anion–p interaction
would find applications in anion-directed molecular self-assembly.
We thank the National Natural Science Foundation of
China (91127008, 21072197, 21132005, 21121004), Ministry
of Science and Technology (2011CB932501, 2013CB834504),
Chinese Academy of Sciences for financial support.
Notes and references
2012, 48, 43; (f) B. Konig and M. H. Fonseca, Eur. J. Inorg. Chem.,
2000, 2303.
¨
z Crystallographic data for 5a (C30H18N6O6): Mr = 558.50, trigonal,
%
space group R3, a = 35.328 (5), b = 35.328 (5), c = 12.311 (3) A, a =
90.001, b = 90.001, g = 120.001, V = 13307 (4) A3, T = 173 (2) K,
full-matrix least-squares refinement on F2 converged to RF = 0.0704
[I > 2s(I)], 0.0900 (all data) and Rw(F2) = 0.1557 [I > 2s(I)], 0.1669
(all data), goodness of fit 1.178. CCDC 897876. Crystallographic data
for 5b. (C30H8F10N6O6): Mr = 738.42, monoclinic, space group P2(1)/n,
a = 12.587 (3), b = 18.349 (4), c = 13.403 (3) A, a = 90.001,
7 (a) Y. Chen, D.-X. Wang, Z.-T. Huang and M.-X. Wang, Chem.
Commun., 2011, 47, 8112; (b) S. Li, S.-X. Fa, Q.-Q. Wang,
D.-X. Wang and M.-X. Wang, J. Org. Chem., 2012, 77, 1860.
8 (a) P. Gans, A. Sabatini and A. Vacca, Talanta, 1996, 43, 1739;
quad.co.uk.
c
11460 Chem. Commun., 2012, 48, 11458–11460
This journal is The Royal Society of Chemistry 2012