FSPE involves filtration through commercial fluorous
silica gel, washing first with a fluorophobic solvent mix,
to remove untagged impurities, and then a fluorophilic
solvent mix, to isolate the tagged product. Tagged oxi-
ndoles 2a,b were prepared using a modification of our
Pummerer9 approach and were purified conveniently using
FSPE. With the nonaflate group on the aromatic ring in
amides 1a,b, good regiocontrol was observed in the Pum-
merer cyclization and 2a,b were obtained as a separable 4:1
mixture of isomers in favor of the desired isomer shown.
Subsequent oxidation and alkylation with a range of 1,2-
bromomethylbenzenes gave sulfones 3aaꢀ3bd after pur-
ification using FSPE after each stage (Scheme 2). FSPE
proved particularly valuable for the isolation of inter-
mediates 3 as they were unstable to conventional flash
chromatography.
Scheme 1. Phase Tag-Assisted Approach to End-Capped
Oligothiophenesa
a Circle represents a thiophene-based linker.
either molecular or polymeric in nature. Oligothiophenes
are the most well studied molecular materials.4 In parti-
cular, acene end-capped oligothiophenes have been shown
tobe promising organic semiconductors for applications in
organic field effect transistors (OFETs).5 Field effect
mobilities and Ion/off values up to 0.40 cm2 Vꢀ1 sꢀ1 and
1 ꢁ 105 have been reported for devices fabricated using
vacuum evaporation.5a Devices made by solution proces-
sing show slightly lower values at 3.1 ꢁ 10ꢀ2 cm2 Vꢀ1 sꢀ1
and 4.5 ꢁ 104, respectively.5b In this Letter we describe the
construction of novel benzo[b]carbazole end-capped oli-
gothiophenes using tag introductionꢀcyclization and tag
removalꢀcyclization strategies alongside tag-assisted pur-
ification technologies and detail their preliminary evalua-
tion as organic semiconductors.
Scheme 2. Phase Tag IntroductionꢀCyclization and Phase
Tag RemovalꢀCyclization in a Fluorous Synthesis of
Benzo[b]carbazoles
We have previously reported a tag introductionꢀ
cyclization process2a,b based on a connective Pummerer-
type reaction6 that allows a fluorous tag7 to be introduced
and a heterocycle to be constructed in a one-pot reaction.
With the fluorous tag in place, fluorous solid-phase ex-
traction (FSPE)8 can be used to purify intermediates
without recourse to conventional purification methods.
ꢀ
(4) Murphy, A. R.; Frechet, J. M. J. Chem. Rev. 2007, 107, 1066.
(5) (a) Tian, H. K.; Shi, J. W.; Yan, D. H.; Wang, L. X.; Geng, Y. H.;
Wang, F. S. Adv. Mater. 2006, 18, 2149. (b) Ahmed, M. O.; Wang, C.;
Keg, P.; Pisula, W.; Lam, Y.-M.; Ong, B. S.; Ng, S.-C.; Chen, Z.-K.;
Mhaisalkar, S. G.J. Mater. Chem. 2009, 19, 3449. (c) Yanagi, H.; Araki, Y.;
Ohara, T.; Hotta, S.; Ichikawa, M.; Taniguchi, Y. Adv. Funct. Mater. 2003,
13, 767. (d) Meng, H.; Bao, Z.; Lovinger, A. J.; Wang, B.-C.; Mujsce, A. M.
J. Am. Chem. Soc. 2001, 123, 9214. (e) Meng, H.; Zheng, J.; Lovinger, A. J.;
Wang, B.-C.; Van Patten, P. G.; Bao, Z. Chem. Mater. 2003, 15, 1778. (f)
Tian, H. K.; Shi, J. W.; He, B.; Hu, N. H.; Dong, S. Q.; Yan, D. H.; Zhang,
J. P.; Geng, Y. H.; Wang, F. S. Adv. Funct. Mater. 2007, 17, 1940. (g) Tang,
W.; Singh, S. P.; Ong, K. H.; Chen, Z.-K. J. Mater. Chem. 2010, 20, 1497.
(h) Yamaguchi, Y.; Maruya, Y.; Katagiri, H.; Nakayama, K.; Ohba, Y.
Org. Lett. 2012, 14, 2316.
Pleasingly, treatment of sulfones 3aaꢀ3bd with the
electron transfer reductant samarium(II) iodide (SmI2)10
(9) For recent reviews of Pummerer chemistry, see: (a) Smith,
L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew. Chem.,
Int. Ed. 2010, 49, 5832. (b) Akai, S.; Kita, Y. Top. Curr. Chem. 2007, 274,
35. (c) Feldman, K. S. Tetrahedron 2006, 62, 5003. (d) Bur, S. K.; Padwa,
A. Chem. Rev. 2004, 104, 2401.
(10) For recent reviews, see: (a) Szostak, M.; Procter, D. J. Angew.
Chem., Int. Ed. 2012, 51, 9238. (b) Szostak, M.; Procter, D. J. Angew.
Chem., Int. Ed. 2011, 50, 7737. (c) Procter, D. J.; Flowers, R. A., II;
Skrydstrup, T. Organic Synthesis Using Samarium Diiodide: A Practical
Guide; RSC Publishing: Cambridge, 2010. (d) Nicolaou, K. C.; Ellery, S. P.;
Chen, J. S. Angew. Chem., Int. Ed. 2009, 48, 7140. (e) Flowers, R. A., II.
Synlett 2008, 1427. (f) Gopalaiah, K.; Kagan, H. B. New J. Chem. 2008,
32, 607. (g) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev.
(6) (a) Miller, M.; Tsang, W.; Merritt, A.; Procter, D. J. Chem.
Commun. 2007, 498. (b) Miller, M.; Vogel, J. C.; Tsang, W.; Merrit,
A.; Procter, D. J. Org. Biomol. Chem. 2009, 7, 589. (c) Ovens, C.; Martin,
N. G.; Procter, D. J. Org. Lett. 2008, 10, 1441.
(7) For a discussion of fluorous tagging, see: (a) Studer, A.; Hadida,
S.; Ferritto, R.; Kim, S.-Y.; Jeger, P.; Wipf, P.; Curran, D. P. Science
1997, 275, 823. For recent reviews, see: (b) Curran, D. P. In The
ꢀ
Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P., Horvath,
I. T., Eds.; Wiley-VCH: Weinheim, 2004. (c) Zhang, W. Tetrahedron 2003,
59, 4475. (d) Zhang, W. Chem. Rev. 2004, 104, 2531.
ꢀ
(8) (a) Curran, D. P.; Luo, Z. J. Am. Chem. Soc. 1999, 121, 9069. (b)
Zhang, W.; Curran, D. P. Tetrahedron 2006, 62, 11837.
2004, 104, 3371. (h) Dahlen, A.; Hilmersson, G. Eur. J. Inorg. Chem.
2004, 3393. (i) Kagan, H. B. Tetrahedron 2004, 59, 10351.
Org. Lett., Vol. 14, No. 22, 2012
5745