Organic Letters
Letter
1179. (d) Bennett, C. S.; Galan, M. C. Methods for 2-Deoxyglycoside
Synthesis. Chem. Rev. 2018, 118, 7931−7985 and references therein .
(3) (a) Elshahawi, S. I.; Shaaban, K. A.; Kharel, M. K.; Thorson, J. S.
A Comprehensive Review of Glycosylated Bacterial Natural Products.
Chem. Soc. Rev. 2015, 44, 7591−697. (b) Borovika, A.; Nagorny, P.
Recent Advances in the Synthesis of Natural 2-Deoxy-β-glycosides. J.
Carbohydr. Chem. 2012, 31, 255−283. (c) de Lederkremer, R. M.;
Marino, C. Deoxy Sugars: Occurrence and Synthesis. Adv. Carbohydr.
Chem. Biochem. 2007, 61, 143−216.
129, 14670−14683. (c) Khatri, H. R.; Nguyen, H.; Dunaway, J. K.;
Zhu, J. Total Synthesis of Antitumor Antibiotic Derhodinosylurda-
mycin A. Chem. - Eur. J. 2015, 21, 13553−13557. (d) Yang, X.; Yu, B.
Synthesis of Landomycin D: Studies on the Saccharide Assembly.
Synthesis 2016, 48, 1693−1699.
(10) Wang, H.-Y. L.; Xin, W.; Zhou, M.; Stueckle, T. A.;
Rojanasakul, Y.; O’Doherty, G. A. Stereochemical Survey of Digitoxin
Monosaccharides. ACS Med. Chem. Lett. 2011, 2, 73−78.
(11) (a) Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner,
P. R. (Thio)urea Organocatalyst Equilibrium Acidities in DMSO. Org.
Lett. 2012, 14, 1724−1727. (b) Kanzaki, R.; Doi, H.; Song, X.; Hara,
S.; Ishiguro, S.; Umebayashi, Y. Acid-Base Property of N-
Methylimidazolium-Based Protic Ionic Liquids Depending on
Anion. J. Phys. Chem. B 2012, 116, 14146−14152. (c) Gorityala, B.
K.; Ma, S.; Cai, J.; Liu, X.-W. (S)-Camphorsulfonic Acid Catalyzed
Highly Stereoselective Synthesis of Pseudoglycosides. Bioorg. Med.
Chem. Lett. 2009, 19, 3093−3095. (d) Balmond, E. I.; Benito-
Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M.
C. A 3,4-Trans-Fused Cyclic Protecting Group Facilitates α-Selective
Catalytic Synthesis of 2-Deoxyglycosides. Angew. Chem., Int. Ed. 2014,
53, 8190−8194.
(12) (a) Pedersen, C. M.; Nordstrom, L. U.; Bols, M. Super Armed”
Glycosyl Donors: Conformational Arming of Thioglycosides by
Silylation. J. Am. Chem. Soc. 2007, 129, 9222−9235. (b) Jensen, H.
H.; Pedersen, C. M.; Bols, M. Going to Extremes: ″Super″ Armed
Glycosyl Donors in Glycosylation Chemistry. Chem. - Eur. J. 2007, 13,
7576−7582. (c) Heuckendorff, M.; Premathilake, H. D.;
Pornsuriyasak, P.; Madsen, A. Ø.; Pedersen, C. M.; Bols, M.;
Demchenko, A. V. Superarming of Glycosyl Donors by Combined
Neighboring and Conformational Effects. Org. Lett. 2013, 15, 4904−
4907.
(4) (a) Kirschning, A.; Bechthold, A. F.-W.; Rohr, J. Chemical and
Biochemical Aspects of Deoxysugars and Deoxysugar Oligosacchar-
ides. Top. Curr. Chem. 1997, 188, 1−84. (b) Wang, A. H. J.; Ughetto,
G.; Quigley, G. J.; Rich, A. Interactions Between an Anthracycline
Antibiotic and DNA: Molecular Structure of Daunomycin Complexed
to d(CpGpTpApCpG) at 1.2-Å Resolution. Biochemistry 1987, 26,
1152−1163. (c) Wilhelm, M.; Mukherjee, A.; Bouvier, B.;
Zakrzewska, K.; Hynes, J. T.; Lavery, R. Multistep Drug Intercalation:
Molecular Dynamics and Free Energy Studies of the Binding of
Daunomycin to DNA. J. Am. Chem. Soc. 2012, 134, 8588−8596.
(5) (a) Ferrier, R. J. Substitution-with-allylic-rearrangement
Reactions of Glycal Derivatives. Top. Curr. Chem. 2001, 215, 153−
́
175. (b) Gomez, A. M.; Lobo, F.; Uriel, C.; Lopez, J. C. Recent
Developments in the Ferrier Rearrangement. Eur. J. Org. Chem. 2013,
2013, 7221−7262 and references therein . (c) Gomez, A. M.;
Miranda, S.; Lopez, J. C. Ferrier Rearrangement: An Update on
Recent Developments. Carbohydrate Chemistry; The Royal Society of
Chemistry: 2017; Vol. 42, pp 210−247.
(6) (a) Zhao, G.; Wang, T. Stereoselective Synthesis of 2-
Deoxyglycosides from Glycals by Visible-Light-Induced Photoacid
Catalysis. Angew. Chem., Int. Ed. 2018, 57, 6120−6124. (b) Gupta, M.
R.; Thakur, K.; Khare, N. K. L-Proline/CeCl3·7H2O-NaI Mediated
Stereoselective Synthesis of α-2-Deoxy Glycosides from Glucal.
Carbohydr. Res. 2018, 457, 51−55. (c) Hsu, M.-Y.; Liu, Y.-P.; Lam,
S.; Lin, S.-C.; Wang, C.-C. TMSBr-Mediated Solvent- and Work-up-
free Synthesis of α-2-Deoxyglycosides from Glycals Beilstein. Beilstein
J. Org. Chem. 2016, 12, 1758−1764. (d) Toshima, K.; Nagai, H.;
Ushiki, Y.; Matsumura, S. Novel Glycosidations of Glycals Using BCl3
or BBr3 as a Promoter for Catalytic and Stereoselective Syntheses of
2-Deoxy-α-glycosides. Synlett 1998, 1998, 1007−1009. (e) Toshima,
K.; Tatsuta, K.; Kinoshita, M. Total Synthesis of Elaiophylin
(Azalomycin B). Bull. Chem. Soc. Jpn. 1988, 61, 2369−2381.
(f) Wakamatsu, T.; Nakamura, H.; Naka, E. Synthetic Studies on
Antibiotic Macrodiolide: Synthesis of the A-Segment of Elaiophylin.
Tetrahedron Lett. 1986, 27, 3895−3898.
(13) (a) Hosoya, T.; Ohashi, Y.; Matsumoto, T.; Suzuki, K. On the
Stereochemistry of Aryl C-Glycosides: Unusual Behavior of Bis-
TBDPS Protected Aryl C-Olivosides. Tetrahedron Lett. 1996, 37,
663−666. (b) Okada, Y.; Nagata, O.; Taira, M.; Yamada, H. Highly β-
Selective and Direct Formation of 2-O-Glycosylated Glucosides by
Ring Restriction into Twist Boat. Org. Lett. 2007, 9, 2755−2758.
(7) (a) Chen, P.; Zhang, X. Hafinium (IV) Promoted Synthesis of
2,3-Unsaturated N- and C-Pseudoglycosides via Type I Ferrier
Rearrangement. Tetrahedron Lett. 2017, 58, 309−312. (b) Sun, G.;
Qiu, S.; Ding, Z.; Chen, H.; Zhou, J.; Wang, Z.; Zhang, J. Magnetic
Core-Shell Fe3O4@C-SO3H as an Efficient and Renewable ‘Green
Catalyst’ for the Synthesis of O-2,3-Unsaturated Glycopyranosides.
Synlett 2017, 28, 347−352. (c) Dash, A. K.; Madhubabu, T.; Yousuf,
S. K.; Raina, S.; Mukherjee, D. One-pot Mukaiyama Type Carbon-
Ferrier Rearrangement of Glycals: Application in the Synthesis of
Chromanone 3-C-Glycosides. Carbohydr. Res. 2017, 438, 1−8.
(8) (a) Williams, D. B. G.; Simelane, S. B.; Kinfe, H. H. Aluminium
Triflate Catalysed O-Glycosidation: Temperature-Switched Selective
Ferrier Rearrangement or Direct Addition with Alcohols. Org. Biomol.
Chem. 2012, 10, 5636−5642. (b) Rosati, O.; Curini, M.; Messina, F.;
Marcotullio, M. C.; Cravotto, G. Ferrier Rearrangement and 2-Deoxy
Sugar Synthesis from D-Glycals Mediated by Layered α-Zirconium
Sulfophenylphosphonate-Methanphosphonate as Heterogeneous Cat-
alyst. Catal. Lett. 2013, 143, 169−175.
(9) (a) Zhang, G.; Fang, L.; Zhu, L.; Zhong, Y.; Wang, P. G.; Sun, D.
Syntheses and Biological Activities of 3′-Azido Disaccharide
Analogues of Daunorubicin against Drug-Resistant Leukemia. J.
Med. Chem. 2006, 49, 1792−1799. (b) Zhang, H.; White-Phillip, J. A.;
̈
Melancuon, C. E., III; Kwon, H.-j.; Yu, W.-l.; Liu, H.-w. Elucidation of
the Kijanimicin Gene Cluster: Insights into the Biosynthesis of
Spirotetronate Antibiotics and Nitrosugars. J. Am. Chem. Soc. 2007,
E
Org. Lett. XXXX, XXX, XXX−XXX