M. F. Parker et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6828–6831
6831
Table 5
In summary, potent
c
-secretase inhibitors emerged from SAR
Binding activity4 for alpha-alkyl side chain replacement derivatives
studies focused on the initial optimization of our sulfonamide lead.
The most potent compounds were the 3-fluoro-4-methoxybenzyl
compound 55 and the 4-cyanobenzyl compound 58, both of which
are derived from readily available
showed promising in vivo effects on brain Ab40 reduction in early
screening studies. Efforts to further optimize this sulfonamide ser-
ies of c-secretase inhibitors as well as their SAR versus other pro-
teins cleaved by b-secretase (i.e. Notch) will be reported in due
course.
R
O
S
O
H2N
Cl
D-leucine. These compounds
N
O
R'
Compd
R
R0
Ab42 IC50
(nM)10
51
52
H
3-Fluoro-4-
methoxybenzyl
3-Fluoro-4-
2000
5.3
CH3–
Supplementary data
methoxybenzyl
4-Cyanobenzyl
4-Cyanobenzyl
3-Fluoro-4-
53
54
55
CH3CH2–
CH3CH2CH2–
CH3CH2CH2–
4.4
2.6
0.52
Supplementary data (experimental details for synthetic proce-
dures and associated chemical data for compounds 2, and 9–17
are available) associated with this article can be found, in the on-
methoxybenzyl
4-Cyanobenzyl
3-Fluoro-4-
56
57
Butyl–
(CH3)2CH–
1.0
1.4
methoxybenzyl
3-Fluoro-4-
methoxybenzyl
21
(CH3)2CHCH2–
0.15
References and notes
58
59
60
Cyclopropylmethyl 4-Cyanobenzyl
Cyclopropylmethyl 4-Trifluoromethyl
0.94
0.68
0.35
1. Beier, M. T. Pharmacotherapy 2007, 27, 399.
2. Haass, C.; Selkoe, D. J. Nat. Rev. Mol. Cell Biol. 2007, 8, 101.
3. Parker, M. F.; Bronson, J. J.; Barten, D. M.; Corsa, J. A.; Du, W.; Felsenstein, K. M.;
Guss, V. L.; Izzarelli, D.; Loo, A.; McElhone, K. E.; Marcin, L. R.; Padmanabha, R.;
Pak, R.; Polson, C. T.; Toyn, J. H.; Varma, S.; Wang, J.; Wong, V.; Zheng, M.;
Roberts, S. B. Bioorg. Med. Chem. Lett. 2007, 17, 5790.
CH2@CHCH2–
3-Fluoro-4-
methoxybenzyl
4-Methoxybenzyl
4-Cyanobenzyl
4-Cyanobenzyl
4-Cyanobenzyl
4-Cyanobenzyl
4-Cyanobenzyl
61
62
63
64
65
66
Ph-CH2–
390
19
1800
4300
48
CH3S(CH2)2–
CH3SO(CH2)2–
CH3SO2(CH2)2–
CH3OCH2–
4. The cellular GS H4-8 SW1-42 assay was performed as described (a) Truong, A.
P.; Aubele, D. L.; Probst, G. D.; Neitzel, M. L.; Semko, C. M.; Bowers, S.; Dressen,
D.; Hom, R. K.; Konradi, A. W.; Sham, H. L.; Garofalo, A. W.; Keim, P. S.; Wu, J.;
Dappen, M. S.; Wong, K.; Goldbach, E.; Quinn, K. P.; Sauer, J.-M.; Brigham, E. F.;
Wallace, W.; Nguyen, L.; Hemphill, S. S.; Bova, M. P.; Basi, G. Bioorg. Med. Chem.
Lett. 2009, 19, 4920; (b) Parker, M. F.; Barten, D. M.; Bergstrom, C. P.; Bronson, J.
J.; Corsa, J. A.; Deshpande, M. S.; Felsenstein, K. M.; Guss, V. L.; Hansel, S. B.;
Johnson, G.; Keavy, D. J.; Lau, W. Y.; Mock, J.; Prasad, C. V. C.; Polson, C. T.; Sloan,
C. P.; Smith, D. W.; Wallace, O. B.; Wang, H. H.; Williams, A.; Varma, S.; Zheng,
M. Bioorg. Med. Chem. Lett. 2007, 17, 4432.
5. Gillman, K. W.; Starrett, J. E.; Parker, M. F.; Xie, K.; Bronson, J. J.; Marcin, L. R.;
McElhone, K. E.; Bergstrom, C. P.; Mate, R. A.; Williams, R.; Meredith, J. E.;
Burton, C. R.; Barten, D. M.; Toyn, J. H.; Roberts, S. B.; Lentz, K. A.; Houston, J. G.;
Zaczek, R.; Albright, C. F.; Decicco, C. P.; Macor, J. E.; Olson, R. E. Med. Chem. Lett.
2010, 1, 12.
(CH3)3COCH2–
54
as in analogues 2, 57–59 giving the best potency. Removal of the
side-chain altogether (51) resulted in a significant loss of potency.
The presence of unsaturation as in a terminal alkene 60 was well-
tolerated. Aromatic substituents (61) were much less preferred as
was the addition of polar substituents (62–66) on the side chain.
Compounds 55, 58 and 59 were among the more potent ana-
logues and were selected for in vivo screening to compare with
the caprolactam 1. Amyloid precursor protein Transgenic mice
(Tg2576 mice)7, 3–6 months of age, were treated by oral gavage
6. McMurray, J. S.; Wang, W. Tetrahedron Lett. 1999, 2501.
7. Kitas, E. A.; Galley, G.; Jakob-Roetne, R.; Flohr, A.; Wostl, W.; Mauser, H.; Alker,
A. M.; Czech, C.; Ozmen, L.; David-Pierson, P.; Reinhardt, D.; Jacobsen, H. Bioorg.
Med. Chem. Lett. 2008, 18, 304.
8. Compounds 21, 24, 26, and 28 were analyzed in our standard transgenic model
(described in the text) for their potential to reduce Ab40 in plasma and brain at
with test compounds at a single dose of 200 lmol/kg. The effect
of compound treatment on Ab40 levels6 was measured 180 min
after dosing in brain and plasma (Table 6), along with exposures
of the test compounds. All three compounds showed a marked
improvement in brain Ab40 lowering relative to 1, presumably
due in part to their greater intrinsic potency. Interestingly, only
58 and 59 showed higher reduction in plasma Ab40 levels. Com-
pound 58 had the best metabolic stability and showed correspond-
ingly better plasma exposures at the 180 min time-point, although
brain concentrations were not appreciably increased relative to 1.
As is with single time-point and single dose studies, these data
cannot be used to draw conclusions about correlations between
exposure and lowering of Ab40 levels. However, these data served
to demonstrate the in vivo potential of the acyclic sulfonamides,
and were the impetus for continued interest in and optimization
of this chemotype.
a dose of 200
advantage.
lmol/kg. The 4-chloro analog (21) was shown to have a clear
9. (a) Stepan, A. F.; Karki, K.; McDonald, W. S.; Dorff, P. H.; Dutra, J. K.; DiRico, K. J.;
Won, A.; Subramanyam, C.; Efremov, I. V.; O’Donnell, C. J.; Nolan, C. E.; Becker,
S. L.; Pustilnik, L. R.; Sneed, B.; Sun, H.; Lu, Y.; Robshaw, A. E.; Riddell, D.;
O’Sullivan, T. J.; Sibley, E.; Capetta, S.; Atchison, K.; Hallgren, A. J.; Miller, E.;
Wood, A.; Obach, R. S. J. Med. Chem. 2011, 54, 7772; (b) Stepan, A. F.;
Subramanyam, C.; Efremov, I. V.; Dutra, J. K.; O’Sullivan, T. J.; DiRico, K. J.;
McDonald, W. S.; Won, A.; Dorff, P. H.; Nolan, C. E.; Becker, S. L.; Pustilnik, L. R.;
Riddell, D.; Kauffman, G. W.; Kormos, B. L.; Zhang, L.; Lu, Y.; Capetta, S.; Green,
M. E.; Karki, K.; Sibley, E.; Atchison, K.; Hallgren, A. J.; Oborski, C. E.; Robshaw,
A. E.; Sneed, B.; O’Donnell, C. J. J. Med. Chem. 2012, 55, 3414.
10. IC50 values were measured using a GS H4-8 SW1-42 assay. Values are means of
P3 experiments, with 12 drug concentrations in each exp.; intra-assay
variance <10%.
11. The stability in liver microsomes was determined by a high throughput in-
house assay using substrate concentrations of 3 lM microsomal protein across
species. Incubations were performed at 37 °C in sodium phosphate buffer
(100 mM), pH 7.4, and quenched after 10 min. Samples were analyzed by
HPLC/MS.
Table 6
In vivo evaluation of selected sulfonamnide
c
-secretase inhibitors
Brain concn (nM)
Compd
Brain Ab40 Inh. (%)
Plasma Ab40 Inh. (%)
Plasma concn (nM)
Metabolic stability11 (nmol/min/mg)
1
55
58
59
49
72
75
78
2200 1200
380 110
2800 510
6300 1100
47
41
81
65
280 90
840 240
8600 260
3600 1300
0.23 (H)/0.22 (M)
0.30 (H)/0.30 (M)
0.16 (H)/0.17 (M)
0.23 (H)/0.27 (M)
Note: H = Human liver microsomes, M = Mouse liver microsomes.